Tool Support for Developing Pattern-Oriented Architectures

Sherif M. Yacoub and Hany H. Ammar

Computer Science and Electrical Engineering Dept.,

West Virginia University,

Morgantown, WV 26506-6109, USA

ABSTRACT

Design patterns have recently attracted the interest of researchers and practitioner as reusable proven-solutions to frequent design problems. Deploying these solutions to develop complex information systems is a tedious task that involves integration issues and iterative development. A tool-support for development with patterns will eventually facilitate the analysis and design phases. Current modeling tools do not explicitly support pattern as architecture construct with interfaces.

This paper discusses the requirement specification of a visual composition tool that supports the development of object oriented architectures from constructive design patterns. The notion of pattern interfaces is made explicit to integrate patterns at the architecture level. The tool facilitates the development of architectures for information systems such as the Client/Server architecture for distributed medical informatics systems. Current visual modeling languages and their tool support do not explicitly incorporate the new concepts of pattern diagrams and pattern interfaces. The proposed tool supports high-level designs using patterns as design components with interfaces, and integrates with existing tools for lower level designs in terms of class and collaboration diagrams. This paper reports on the specification of a tool support for designing with patterns as architecture constructs.

Keywords: Patter-Oriented Architectures, Design Patterns, and Tool-support for patterns.

1. INTRODUCTION

Patterns were introduced to document good design practices. For this purpose, much work has been motivated to document new patterns. Patterns represent an abstraction layer below the level of architectures and frameworks, and above the fundamental constructs of object oriented designs (classes and objects) [2,4,7].

A design pattern hides lower-level design decisions. In [11,13], we define an approach to use constructive design pattern as "Design Components" with well-defined interfaces to other design artifacts. Specifying a pattern as a design component leverages the interest in a pattern to higher levels of design that hides later design details but yet preserves consistency with lower level designs.

This paper addresses the development of a tool support for using patterns as building blocks. The tool facilitates the development of pattern-oriented designs and frameworks [11,12]. These frameworks represent an architecture view where design patterns are used as constructive design components. In structured analysis and design, functional modules are used as building blocks. In object-oriented analysis and design, classes are used as the basic building blocks of class diagrams. In pattern-oriented design, constructive design patterns are used as building blocks. This approach produces designs that can be viewed at different levels of abstraction. At high level of abstraction, the design is viewed as patterns and their dependency relationships. This is an architecture view because it represents the application as component (constructive design patterns) and their relationship (pattern dependencies). At lower level of abstraction the internals of the patterns can be revealed to produce traditional object oriented class diagrams.

Gluing patterns together in a design is not just a simple process of interconnecting the internal components of the patterns. We have to merge some components, this may lead to some problems such as loosing track of patterns or increasing the complexity of the application. Therefore, a tool support is essential to facilitate the traceability of the development process.

This paper reports on the requirements of a tool that is used to support the pattern-oriented design concepts. First, we discuss, in Section 2, related pattern-support tools and identify their limitations to build pattern-oriented designs. In Section 3, we discuss the high level requirements of the tool. In Section 4, we elaborate on three pattern views that shall be supported by the tool. We then discuss how the tool is useful and conclude the paper in Section 5.

2. RELATED TOOLS

Several work has been done on tool-support for documenting and instantiating patterns. In this section we briefly discuss the approach used in some tools and identify their limitations.

Framework Adaptive Composition Environment (FACE)

For code generation and pattern instantiation purposes, the software development environment FACE (Framework Adaptive Composition Environment) [5] was developed to guide the process of instantiating patterns. It starts with a primal-schema, containing the abstract classes of a pattern and their association, then proceeds to a meta-schema for concrete classes, operations and associations.

Fragmentation Technique

The "fragmentation" technique [3] shows another approach for binding patterns together with one another and with other non-pattern classes. This approach does bind patterns together with other program artifacts but at a lower level of fragments. We believe it will be difficult for large designs since it is difficult to trace and have cumbersome design views. The tool support for pattern-oriented architecture described later in this paper solves this problem at a higher level of abstraction.

PSiGene CASE tool

The application PSiGene CASE tool [8] is another tool for binding patterns from a predefined catalog with class models to form the final application. This method is application specific (building simulators) and it also generates the classes and methods for specific patterns from a catalog but doesn't link them together in a higher design level.

Code Generation

The research in IBM [1] has developed a tool for code generation from design patterns. The tool shows how code can be automatically generated for a pattern by supplying application specific information of a chosen pattern.

The Pattern-Lint

The Pattern-Lint tool [9] was introduced to check the compliance of a pattern implementation. A set of rules is defined for each design patterns and the implementation is checked against these rules. The tool is used for analysis of systems developed from patterns but does not implement a methodology to develop applications using patterns.

Hooks and Templates

A more global view of deploying patterns in design is proposed in [6], a meta-pattern called "HOOK&TEMPLATE" is presented to distinguish between pattern components that will be implemented by the user and those components that are already defined for the pattern class collaboration.

Framework Studio

The framework studio [14] is a commercial tool for storage of patterns. It allows searching and browsing catalogue of patterns and then inserting the class diagram of a selected pattern in UML tools such as Rational Rose. This tool is a general-purpose repository management tool and does not address any specific design methodology.

None of the currently available tools discusses how to assist the process of constructing designs by gluing together constructive design patterns. Pattern-oriented designs provide a good level of abstraction at the architecture level. The main concerns of most of the current tools are pattern instantiation, implementation, or code generation. In this paper, we describe the requirements of a tool that can be used to develop pattern-oriented designs using pattern diagrams.

Our approach represents a visual method of designing applications by assembling patterns and documenting pattern relationships while hiding details of the pattern structure not used directly at the high-level design. The tool supports the new notions of pattern interfaces and diagrams, and can be interfaced to existing tools that support state of the art visual modeling language such as the Unified Modeling Language [10].

3. REQUIREMENTS

The tool supports the visual process of designing with patterns and documenting pattern relationships while hiding the details of the pattern structure not utilized at the high-level design. The following are fundamental requirements concerning the functionality and user interface of the tool.

Functional Requirements

1) The tool supports the concepts of pattern diagrams and patterns interfaces for the purpose of developing pattern-oriented architectures.

2) The tool supports three views; Pattern-Level view, Pattern Interfaces view, and Detailed Pattern view.

3) The tool supports access to a repository of patterns in an associated database. Authorized users shall be able to add new patterns to the repository.

4) The tool supports the definition and selection of multiple interfaces for patterns.

5) The tool has a model-checking capability to identify interface mismatches and validate architectures based on a set of pre-specified design rules.

6) The tool has an easy to use graphical user interface that has: a browser to list pattern diagrams, a documentation window to display documentation about a selected artifact, and an editing window to build the design models.

7) The design of the tool shall be based on object-oriented models that allow future extensions to integrate additional capabilities.

User Interface Requirements

1)
The tool has an easy-to-use graphical user interface similar to current object oriented modeling tools and adheres to similar notations as that of Unified Modeling Language [10].

2)
The GUI of the tool has:

· Three Working Areas

a) Browser: The browser maintains a list of all created diagrams.

b) Documentation: A window that displays the documentation of a selected design artifact.

c) Diagrams Window: A window that displays all pattern diagrams opened for editing.

· Standard Toolbar and Menu to facilitate accessibility to operations provided by the tool.

· Working Toolbar: The Working Toolbar has all possible artifacts and relationships that could be instantiated in a design diagram. The content of the Working Toolbar changes according to the type of the diagram selected for editing. For instance, when working at the Pattern-Level view we have patterns as artifacts that could be instantiated from the Working Toolbar. While working in a Pattern Interfaces diagram, the Working Toolbar has classes and operations as design artifacts

· Specification Window: A specification window is used for viewing and editing the specifications of a selected design artifact.

3)
The Browser Window supports three logical views:

a) Pattern-Level view (Section 4.1)

b) Pattern Interfaces view (Section 4.2)

c) Detailed Pattern view (Section 4.3)

For each view, the user shall be able to create pattern diagrams that reflect the corresponding view. For each view the Working Toolbar reflects the artifacts that could be used in developing a pattern diagram.

The following section describes the pattern views supported by the tool.

4. PATTERN VIEWS

4.1 Pattern-Level view

The purpose of diagrams developed under Pattern-Level view is to model the application as a visual composition of patterns at a high design level.

Creation: Pattern-Level diagrams are created under Pattern-Level view in the browser window.

Working Toolbar Artifacts: When editing a Pattern-Level diagram, the Working Toolbar shall contain the following artifacts: Notes, Note Connection, Subsystem, Pattern, Dependency Relationship, and an Interface Connector

Schematic Diagram: A Pattern-Level diagram can display the following artifacts. (For each artifact, the designer shall be able to use a specification window to view/edit the artifact attributes. The content of the specification window differs according to the selected artifact).

a) Patterns

Patterns are represented as rectangles with Pattern Instance Name and Pattern Type:

[image: image1.emf]
· Type: each pattern instance has a type. We refer to the Type here as the well known and documented name of the pattern, for example Observer, Factory, Strategy patterns [4]

· Instance Name: This is the name of the instance of the pattern created in the application design. You can instantiate several patterns of the same type in one design; the name of the instance will distinguish each. Example: SensorObserver and UserInterfaceObserver are instances of type Observer.
The specification window for a pattern displays the Name of the pattern, its type (selection from a list of pattern library: Observer, Strategy, … etc.), and the associated documentation.

b) Subsystem

A subsystem is represented using a package symbol (two rectangles as shown) with the subsystem Name in the upper rectangle.

c) Dependency Relationship

A dependency relationship is modeled by dotted line directed to the entity that the source depends on. Currently, dependency is defined as one type of relationships between patterns. A dependency indicates a semantic relationship between two pattern or two subsystems. This relationship is further refined at later design phases by translating it to an association between classes of two communicating patterns or subsystems.

The specification window of a dependency relationship displays the dependency name, role of dependee, role of dependent, and the associated documentation.

d) Notes

Notes can be attached to patterns, subsystems, or dependencies using the Note Connector. Notes have boundaries like folded paper.

e) Interface Connectors

Interface Connectors are used to connect several design sheets together. They are represented by the lollipop symbol (similar to Rose interfaces). Interface connectors have composite names; i.e., Diagram Name: Connector Name. The diagram name shows the names of the other diagrams that this current sheet connects to. Interface Connectors can be connected to subsystems or patterns. The specification window of the Interface Connector shows a list of all other design diagrams that use/provide this interface.

Figure 1 shows a sample Pattern-Level diagram.

Figure 1 A Pattern-Level Diagram

Example: The following shows a sample Pattern-Level diagram for a feedback control system [11]

Figure 2 A Pattern -Level Diagram for Feedback Control Application

Model Checker Rules: The following is a set of rules that the tool checks for consistency:

1. Interface Connectors can only be connected to subsystems and patterns.

2. Within one Pattern-Level diagram, no two Interface Connectors have the same name.

3. Subsystem and Pattern Instance names are unique

4. Dependencies are only used between Patterns, subsystems and Interface connectors.

4.2 Pattern Interfaces view

The purpose of diagrams developed under this view is to display the interfaces between two patterns. These two patterns are dependent on each other as specified by the dependency relationship in the Pattern-Level view.

Creation: For each dependency relationship between subsystems or patterns in a Pattern-Level diagram, we create a Pattern Interfaces diagram to further analyze the dependency relationship.

Working Toolbar Artifacts: When editing a Pattern Interfaces diagram, the Working Toolbar shall contain the following artifacts: Notes, Note Connection, and Associations

Schematic Diagram: A Pattern Interfaces diagram contains the following artifacts:

a) Pattern Interfaces

We should be able to represent interfaces as:

1. Classes

Represented as rectangles labeled with the class name adhering to the pattern frame. Classes at the interface reflect some of the internal classes of the pattern. The interface class can be either a Client or Server interface. The direction of the arrow in the association relationship determines its role.

2. Operations

Represented as rounded ellipses labeled with the "Class Name::Operation Name". Interface operations are accessed by other design artifacts, or access other operations in other design components. The direction of the arrow (outgoing or incoming) from/to the operation specifies its role in the interaction (Required/Provided). Each operation is identified by the class name to which it belongs. This class name is one of the internal classes of the pattern.

b) Notes: Same as Pattern-Level diagram

c) Associations

We define three semantic types of associations:

1. Class/Class: This is the traditional class associations that can be: Aggregation, Dependency, Generalization or Composition

2. Class/Operation: An interface class can interact with an interface operation in another pattern. This type of relationship is expressed when it is still ambiguous to the designer which operation in the interface class interacts with this interface operation.

3. Operation/Operation: This is usually used at a lower design level, it shows which interface operations are interacting. The direction of the arrow would indicate the Required/Provided role of the interface. We will use a solid arrow for all possible types of associations.

The following diagram shows a Pattern Interfaces diagram between two patterns Pattern1 and Pattern2

Figure 3 Pattern Interfaces Diagram

Example: Figure 4 shows the Pattern Interfaces diagram for the "Calculate Error" dependency relationship between the FeedbackStrategy pattern and the ErrorObserver pattern of figure 2.

Figure 4 Pattern Interfaces diagram for a dependency relationship in the Feedback Control Application

Model Checker Rules: The dependency relationship at Pattern-Level view should be completely covered at Pattern Interfaces view; i.e., the tool gives a model check error if a dependency relationship in a Pattern-Level diagram is not further decomposed associations in the Pattern Interfaces diagram.

4.3 Detailed Pattern view

The purpose of diagrams created under this view is to show the pattern in a more detailed view. At this level, we are able to view the details of the patterns and how it interfaces to all other design artifacts. The focus of this diagram is a pattern. The designer uses this diagram at a lower level to develop class diagrams.

Creation: A Detailed Pattern diagram can be viewed for each pattern in the Pattern-Level diagram.

Working Toolbar Artifacts: When editing a Pattern-Level diagram, the Working Toolbar shall contain the Notes and Note Connection.

Schematic Diagram: A Detailed Pattern diagram contains the following artifacts:

a) Detailed Patterns

The internal structure of the pattern can be viewed and the internals interconnection with the pattern interfaces can be revealed.

b) Connectors

Connectors are used to identify the interface to other model artifacts such as Interfaces, Patterns, or Subsystems. The specification window of the Connector shows other parts of the design the uses this Connector.

Figure 5, shows an example of a Detailed Pattern diagram.

Figure 5 An example of a Detailed Pattern diagram

4.4 Development Phases

The following is the our approach to develop the tool:

1) Develop a prototype, which supports Pattern-Level, Pattern Interfaces and Detailed Pattern views starting with a set of pre-defined design patterns; i.e. the Pattern Integrator component.

2) Add the capability to define and modify design pattern interfaces; i.e. Pattern Editor component

3) Add the capability to define new patterns and add them to the repository; i.e. Pattern Builder component.

4) Add the model checker capability to determine interface mismatches and constraints checks; i.e. Model Checker component.

5) Apply the tool to develop OO design frameworks for distributed object applications such as medical informatics systems [12].

5. SUMMARY

The tool is useful in hierarchical design in that it encourages reuse of previously documented design patterns in designing reusable architectures that are easily traced to object oriented designs at lower design levels. The tool facilitates the development of architectures that are hierarchical and traceable to lower level design while still preserving architecture view of the application. In this short paper, we have reported on the basic requirements for building a tool-support for developing pattern-oriented designs. Currently, the tool is under development and we are investigating the development of pattern-oriented frameworks and designs using the proposed tool.

7. REFERENCES

[1] Budinsky, F., M. Finnie, J. Vlissides, and P. Yu, "Automatic Code Generation from Design Patterns," IBM Systems Journal, Vol 35, No. 2, 1996.

[2] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, "Pattern-Oriented Software Architecture - A System of Patterns", Addison-Wesley, 1996.

[3]
Gert Florijin, Marco Meijers, Pieter van Winsen, "Tool support for Object-Oriented Patterns", Proceedings of the European Conference of Object Oriented Programming, ECOOP'97, p472.

[4]
Gamma, E., R. Helm, R. Johnson, and J. Vlissides, "Design Patterns: Elements of Object-Oriented Software", Addison-Wesley, 1995.

[5]
Meijler , T. D., S. Demeyer, and R. Engel, "Making Design Patterns Explicit in FACE, A Framework Adaptive Composition Environment", in Software Engineering Notes, ESEC/FSE, Vol. 22, No 6, Nov 1997, pp94-110.

[6]
Pagel, B., and M. Winter, "Towards Pattern-Based Tools", EuroPLoP Preliminary Conference Proceedings, July 1996.

[7]
Coplien, J., and D. C. Schmidt,(eds.)“Pattern Language of Program Design,” Addison-Wesely, 1995.

[8]
Schuetze, M., J. P. Riegel, and G. Zimmermann, "A Pattern-Based Application Generator for Building Simulation", in Software Engineering Notes, ESEC/FSE, Vol. 22, No. 6 Nov 1997, pp468-482

[9]
Sefika, M., A. Sane, R. Campbell, "Monitoring Compliance of a Software System with its high-Level Design Models", Proc. Of ICSE'96, 1996.

[10]The Unified Modeling Language Resource Center http://www.rational.com/uml /index.html

[11]Yacoub, S., and H. Ammar, "Towards Pattern Oriented Frameworks", to appear in Journal of Object Oriented Programming JOOP, 1999

[12]Yacoub, S., and H. Ammar, "The Development of a Client/Server Architecture for Standardized Medical Application Network Services", Proc. of the IEEE symposium on Application Specific Software Engineering Technology ASSET'99, IEEE Computer Society, Dallas, Texas, Mar. 1999, pp2-9

[13]Yacoub, S., and H. Ammar, "Patterns as Reusable Design Component", submitted to IEEE Software, Jan 1999.

[14] Blueprint Inc., Framework Studio, http://www blueprint-technologies.com/product/framework studio/index.html

Pattern Instance Name: Pattern Type

Subsystem Name

Store/Retrieve feedback data

Store/Retrieve error data

Apply feedback control strategy

Apply forward control strategy

Calculate Error

Store Measurement

ErrorObserver: Observer

FeedbackStrategy: Strategy

FeedbackObserver: Observer

Blackboard

FeedforwardStrategy:Strategy

Class Name

ClassY::Op4

ClassY::Op4

Class1

ClassX::Op1

ClassX::Op2

Pattern1: Type

Class2

Class1

Op4

Pattern2: Type

ClassY

Op5

ClassZ

Class2

ClassZ:Op5

ClassY:Op4

Class1

Class2

Class1

Pattern2: Type

PatternName3: Type2

PatternName1:Type1

PatternName2: Type2

Context

FeedbackStrategy: Strategy

Connector

Feedback data is ready, Calculate Feedback Error

Subject::Notify

Observer::Update

ErrorObserver: Observer

