
Architectural-Level Risk Analysis FOR UML Dynamic Specifications1

Alaa Ibrahim, Sherif M. Yacoub, Hany H. Ammar1
Department of Computer Science and Electrical Engineering,

West Virginia University
Morgantown, WV26506-6109

Ibrahim@csee.wvu.edu, yacoub@csee.wvu.edu, hammar@wvu.edu

ABSTRACT

Risk assessment is an essential process in managing software development. Performing risk

assessment in the early development phases enhances the resource allocation decisions.

Several methodologies for risk assessment were developed, mostly based on subjective

judgment. In this paper we use the Unified Modeling language (UML), and a dynamic

metrics based methodology developed in earlier work. We use commercial tools such as

Rose RealTime modeling and simulation environment to obtain simulation statistics for

which an automated architectural-risk assessment environment can be developed. We use

Microsoft Excel sheets and Macros in the development of this environment. The dynamic

metrics based methodology is a heuristic risk assessment methodology that is based on

dynamic complexity factors and severity analysis. Model execution is used for obtaining

dynamic complexity and dynamic coupling measures for all architecture elements. Severity

analysis is performed using Failure Mode and Effect Analysis. Heuristic risk factor for each

architectural component is obtained. A component dependency graph is constructed and

traversed to obtain the overall system/subsystem risk factor.

1. INTRODUCTION

The process of risk assessment is useful in identifying complex modules that require detailed inspection,
estimating potentially troublesome modules, and estimating testing effort. According to NASA-STD-

� This work is funded in part by grants to West Virginia University Research Corp. from the National
Science Foundation Information Technology Research (ITR) Program grant number CCR-0082574, and
from the NASA Office of Safety and Mission Assurance (OSMA) Software Assurance Research Program
(SARP) managed through the NASA Independent Verification and Validation (IV&V) Facility, Fairmont,
West Virginia.

 This work was performed at the Software Architecture and High Performance Computing Research Lab
at West Virginia University under the direction of Dr. Ammar

8719.13A [5] risk is a function of: the possible frequency of occurrence of an undesired event, the potential
severity of resulting consequences, and the uncertainties associated with the frequency and severity. The
STD-8719.13A standard [5] defines several types of risks, for example, availability risk, acceptance risk,
performance risk, cost risk, schedule risk, etc. In this study, we are concerned with reliability-based risk,
which depends on the probability that the software product will fail in the operational environment and the
adversity of that failure.

In this paper we present how the methodology presented in [8] is automated. The methodology is based on:
1. Dynamic metrics: presented by Yacoub, Ammar and Robinson [9] where component complexity

and connector coupling factors are derived from simulating scenarios based on the system scenario
profile. A brief description is presented in section 1.1.

2. Component Dependency Graphs (CDG): introduced by Yacoub, Cukic and
Ammar [10] and adapted by Yacoub and Ammar [8] where a CDG Risk traversal algorithm is
presented. A brief description of the CDG and the risk aggregation algorithm is presented in
section 1.2.

3. Severity analysis: Based on MIL_STD_1629A where the worst case consequence of a failure is
considered, and the severity is determined by the degree of injury, property damage, system
damage, and mission loss that can occur. The Failure Mode and Effect Analysis (FMEA) technique
is a systematic approach that details all possible failure modes and identifies their resulting effect
on the system as presented in the NASA Technical Standard. NASA-STD-8719.13A [5]. In [8]
severity indices (svrtyi) of 0.25, 0.50, 0.75, and 0.95 were assigned to minor, marginal, critical, and
catastrophic severity classes respectively.

The UML-RT model is built and simulated using Rose Real Time, from which log files are made available
for extracting the required parameters. We use Microsoft Excel sheets and Macros in the development of the
automated environment together with Rose Real Time. The methodology derives heuristic risk factors for
components and connectors from dynamic metrics and severity analysis (equation 1), and the
system/subsystem overall risk factor is obtained from the traversal of the CDG.

hrfi = cpxi x svrtyi (T� � �VRXUFH >�@�

where 0 <= cpxi <= 1, and 0<= svrtyi < 1 are the normalized complexity level (dynamic complexity for
components or dynamic coupling for connectors) and severity level for the architecture element respectively
(source [8]). The first step in the Risk assessment methodology for dynamic specifications is to derive the
complexity factors (component complexity and connector coupling) using simulation and Dynamic Metrics.
The next step is to derive severity factors for components and connectors using Failure Mode and Effect
Analysis and simulation techniques. Developing heuristic risk factors for components and connectors using
equation 1 is the third step. Constructing a CDGs for risk assessment purposes and traversing the graph
using the risk aggregation algorithm presented later in this section, is the final step where the product is the
system/subsystem overall risk factor.

1.1. Dynamic Metrics
The complex dynamic behavior of many real-time applications motivates a shift in interest from traditional
static metrics to dynamic metrics. Active components are sources of errors because they execute more
frequent and experience numerous state changes. Therefore there is a higher probability that if a fault exists
in an active component, it will easily manifest itself into a failure. For risk analysis at the architecture level,
the risks of a failure are the interest. Hence, the motive to assess the complexity of components and
connectors as expected at run-time using dynamic metrics, arises.

In the risk analysis, the dynamic metrics defined by Yacoub, Ammar, and Robinson [9] are used to obtain
complexity factors for each architecture element. A complexity factor for each component is obtained using

the dynamic complexity metric for the statechart specification of that component. A complexity factor for
each connector is obtained using the dynamic coupling metric for the messaging protocol of that connector.

1.2. Component Dependency Graphs
Component Dependency Graphs (CDGs) are introduced in [10] as probabilistic models for the purpose of
reliability analysis at the architecture level. CDGs are directed graphs that represent components, component
reliabilities, link and interface reliabilities, transitions, and transition probabilities. CDGs are developed
from scenarios. One way to model scenarios is using UML sequence diagrams. By using sequence
diagrams, we are able to collect statistics required for building CDGs, such as the average execution time of
a component in a scenario, the average execution time of a scenario, and possible interactions among
components. Figure 1 illustrates a simple CDG example consisting of four components, C1, C2, C3, and C4.

 Figure 1 A Sample CDG 1 (source [8])

A CDG is defined as follows:

CDG=<N,E,s,t>; where N is set of nodes, E is set of edges, and s and t are the start and termination
nodes, i.e. N = {n}, E ={e},

<C1,RC1=0.2, EC1=3>

<T12,RT12=1,PT12=0.8>

<C3,RC3=0.7,EC3=6><C2,RC2=0.4,EC2=4>

<C4,RC4=0.8, EC4=3>

<T13 ,RT13=1,PT13= 0.2>

<T24,RT24=1,PT24=1>
<T34 ,RT34=0.9,PT34=1>

s

<T43 ,RT43=1,PT43=0.7>

t

PT4,t=0.3

n = < Ci, RCi, ECi >; where Ci is the name of the ith component, RCi is component reliability, and ECi is
average execution time of a component Ci

e = <Tij, RTij, PTij>, where Tij is transition from node ni to nj in the graph, RTij is transition reliability, PTij
is transition probability.

1.3. The Risk Analysis Algorithm
The architecture risk factor is obtained from aggregating the risk factors of individual components and
connectors. Assuming that a sequence of components are executed, then the risk factor for that sequence of
execution is given by:

 HRF = 1 - Si(1-hrfi)

After constructing the CDG model, the risk of the application can be analyzed as the function of risk factors
of components and connectors using the following risk assessment algorithm (2).

Figure 2 Risk Aggregation Algorithm (source [8])

The algorithm expands all branches of the CDG starting from the start node. The breadth expansions of the
tree represent logical "OR" paths and are hence translated as the summation of aggregated risk factors
weighted by the transition probability along each path. The depth of each path represents the sequential
execution of components, the logical "AND", and is hence translated to multiplication of risk factors (in the

Eq. 2(source [8])

Algorithm
Procedure AssessRisk
Parameters
 consumes CDG, AEappl,(average execution time for the application)
 produces Riskappl
Initialization:

Rappl = Rtemp = 1 (temporary variables for (1-RiskFactor))
Time = 0

Algorithm
push tuple <C1, hrf1, EC1 >, Time, Rtemp
while Stack not EMPTY do
 pop < Ci, hrfi , ECi >, Time, Rtemp
 if Time > AEappl or Ci = t; (terminating node)
 Rappl += Rtemp ;(an OR path)
 else
 � < Cj ,hrfj , ECj > � children(Ci)

push (<Cj, hrfj ,ECj>, Time += ECi , Rtemp =
Rtemp*(1-hrfi)*(1-hrfij)*PTij) (AND path)

 end
end while

Riskappl = 1- Rappl
end Procedure AssessRisk

form of (1-hrfi)). The "AND" paths take into consideration the connector risk factors (hrfij). The depth
expansion of a path terminates when the summation of execution time of that thread sums to the average
execution time of a scenario or when the next node is a terminating node.

2. THE AUTOMATED ENVIRONMENT

2.1. Background
UML was explicitly born as an “open” project [3], with the potential of embedding additional notations and
tools to satisfy specific design requisites. Along this trace, Rational Software [4](the UML originator) and
ObjecTime Limited [2](the Real-Time Object Oriented Modeling “ROOM” originator) collaborated in
defining UML for Real-Time [1,6] (UML-RT); an extension of UML optimized for real-time embedded
software development. ROOM was introduced to study the dynamic aspects of applications modeled as
concurrently executing objects with complex dynamic behavior. ROOM models are intended for simulating
the application execution scenarios and complex object behavior. UML specification provides a State
Machine package as a sub package of the behavioral elements package. UML state machines formalism is a
variant of Harel Statecharts and it incorporates several ROOMcharts concepts and ROOMcharts are a
valiant of ROOM modeling language [7]. Dynamic analysis can be conducted on executable design models
using several tools such as Rational Rose Real-Time from Rational Software Inc. and ObjecTime Developer
from ObjecTime Inc., and hence the dynamic behavior of applications can be verified and assessed. In [6]
deriving the set of architectural constructs that integrate ROOM notation in UML were presented. These
architectural constructs are derived from general UML modeling concepts using UML extensibility
mechanisms. Table 1 provides a summary for these extensions. As a brief description of the basic constructs
used in modeling the system structure and component behavior: Three principal constructs; Capsules, Ports
and Connectors are used to explicitly describe the system structure. Where in a Capsule collaboration
diagram, Capsules and Ports are stereotype roles, and Connectors are association roles. Behavior is modeled
using Protocols and state machines. A Protocol specifies the desired behavior over a connector and
compromises a set of participants, each participant plays a specific ProtocolRole. A Protocol state machine
specifies valid communication sequence and is the standard UML state machine. Capsule behavior is
defined in UML state machine where the stereotype (ChainState) is a state that is used in case of transitions
that are split into a transition that terminates on the boundary of the state and a transition that propagated
into the state (in case of hierarchical state machines).

 Metamodel Class Stereotype

Collaboration Protocol

ClassifierRole ProtocolRole

Class Port

Class Capsule

State ChainState

Table 1 Summary of UML Extensions for ROOM, source [6]

Figure 3 shows a Capsule named Top_Level_Capsule and its Structure Diagram. The Structure Diagram of
Top_Level_Capsule contains two Capsules: First_Capsule and Second_Capsule, each with one port named
Port_1. Port_1 in First_Capsule is assigned a ProtocolRole Protocol_1 and Port_1 in Second_Capsule is
assigned a ProtocolRole Protocol_1~, which is the conjugate of Protocol_1. As mentioned earlier a Protocol

defines the flow of messages between ports. Messages are categorized into incoming and outgoing
messages. In a conjugated Port the messages defined in the Protocol as incoming messages are defined as
outgoing in the ProtocolRole assigned to the Port, and like wise the outgoing messages are defined as
incoming messages in the Protocol Role assigned to the Port. A connector connects the two ports and works
as a media for message delivery.

Figure 3 A Capsule (Top_Level_Capsule) and its Structure Diagram

Top_Level_Capsule

First_Capsule Second_Capsule

 Port_1
Protocol_1

 Port_1
 Protocol_1~

Top_Level_Capsule Structure Diagram

Port

Conjugated Port

Connector

Figure 4 shows the State Diagram of Second_Capsule. Second_Capsule has two states S_1 and S_2 and two
transition t_top and the initial transitions that define the initial state. S_1 is a macro state that is expanded
into another State Diagram shown in figure 5. S_1 has two states and three transition, t_1, t_2 and the initial
transition. t_2 is a transition top a ChainState. Each transition is configured with a message that defines its
firing conditions, except transitions from ChainStates like t_top.

Figure 2.1 State Diagram of First_Capsule (top level)

Figure 5 State Diagram of the macro state S_1

S_1

S_2

In itia l

t_top

In itia l

t_top

S1_1 S1_2
Initial

t_1 t_2 Initial Initial
t_1 t_2

ChainSate

t _top

2.2. Environment
Figure 6 shows a block diagram of the products and processes in the proposed environment for automated
risk assessment. Circles and ovals denote inputs/outputs to be processed/produced by the processes and
activities shown.

Architecture modeling is performed using the UML simulation environment provided by Rose Real Time In
this process the system/subsystem is modeled using the UML-RT artifacts consisting of use-case diagrams,
sequence diagrams, Capsule structure diagrams, and state diagrams. The Capsule structure diagrams specify
the architecture of the systems based on Capsules, Ports, Protocols, and Connectors. Capsules represent
components in the system architecture, Ports are interfaces for Capsules, Protocols specify the messages
communicated across Ports, and Connectors represent the media for messages transferred between ports.
State diagrams (containing state charts) define the dynamic behavior of Capsules.

The UML simulation environment consists of an Observer Capsule defined as an external observing entity.
The Observer component is not part of Rose Real Time; we defined this component in order to facilitate the
automation process. This component is not part of the UML model; it is mainly responsible for setting and
initiating consecutive simulation runs, detection of constraint/requirements violations and the production of
the violation report. These violations represent detected failures during the simulations. The observer is
modeled using state charts based on the expected dynamic behavior of the components as depicted in the
sequence diagrams.

The analyst provides simulation settings at the start of the simulation. These settings consist of variations for
variables that represent timer and delay value for real-time activities on successive runs managed by the
observer. They also capture the different settings for the input stimuli that simulate sequences of scenarios.
The simulation Log and the violation report produced from the simulation are fed to the analysis tool
(Microsoft Excel Macro). The Microsoft Excel Processing Macro analyzes the log file and produces timing
diagrams and a violation table. The violation table consists of detected violations or failures and their
occurrence time. The timing diagrams are provided to help the analyst identify the severity level of the
detected failure in terms of meeting deadlines. The Excel Processing Macro also produces an Excel sheet for
normalized component complexity for each component, an Excel sheet for normalized connector
complexity for each connector, and an Excel sheet for the CDG. The values hrfi and hrfij are identified in a
later stage during the execution of the Risk Macro. Severity Ranking is obtained from the severity analysis
performed by the analyst using the violation table and timing diagrams as diagnostics for effect analysis and
the simulation settings. Feeding the Severity ranking, complexity factors and CDG to the analysis tool
(Microsoft Excel Risk Macro), Risk factors for each component and connector are obtained and the CDG is
traversed to obtain the system/subsystem overall risk factor HRF.

3. CONCLUSION AND FUTURE WORK

The methodology presented in [8] has the following benefits: it is applicable early at the architectural-level
and hence it is possible to identify critical components and connectors early in the lifecycle. The
methodology uses dynamic metrics that covers the fact that a fault in a frequently executed component will
frequently manifest itself into a failure. The methodology is based on simulation of UML-RT models.
Simulation helps in: performing Failure Mode and Effect Analysis procedures and observing the timing
diagrams. The presented automation environment shows how Rose Real Time can be used in fast and
efficient deployment of the methodology.

The above methodology and its automation were applied to the Cardiac Pacemaker case study. Yet future
research could experiment with applying the methodology to larger case studies with multiple subsystems to
compare the aggregated risk factors of individual subsystems.

Figure 6 The Automation process-product diagram

4. REFERENCES

[1] Lyons, A. “UML for Real-Time Overview”, ObjecTime, Ltd., White Paper.
http://www.ObjecTime.com/otl/technical/umlrt.html

[2] ObjecTime Ltd., Kanata, Ontario, Canada, http://www.ObjecTime.com
[3] Object Management Group, Inc., Needham, MA, USA. http://www.omg.org.
[4] Rational Software Corporation, Cupertino, CA, USA. http://www.rational.com

� &RPSRQHQW
&RPSOH[LW\
)DFWRUV

� &RQQHFWRU
FRPSOH[LW\
)DFWRUV

� &'*
³ hrf i and hrf ij
XQLGHQWLILHG´

�)RUPDWWHG
([FHO FKDUWV

� 9LRODWLRQ
7DEOHV

80/ 6LPXODWLRQ (QYLURQPHQW

6LPXODWLRQ
6HWWLQJV

6LPXODWLRQ
/RJ DQG
9LRODWLRQ
5HSRUW

$QDO\VLV
7RRO

7LPLQJ 'LDJ �
 9LRODWLRQ 7DEOH

$QDO\VW

� 5RVH 5HDO 7LPH WRRO
� 7H[W)LOH

� 06 ([FHO
3URFHVVLQJ
0DFUR

,QVSHFWLRQ
9LHZLQJ0DFUR

80/0RGHO

2EVHUYHU

6XE5XQ
6HWWLQJV

$QDO\VLV
7RRO +5)

� 06 ([FHO 5LVN
0DFUR� %DVHG RQ
WKH &'*7UDYHUVDO
DOJRULWKP�

([FHO VKHHWV

6HYHULW\
5DQNLQJ

6HYHULW\ $QDO\VLV
�)DLOXUH�(IIHFW DQDO\VLV�

[5] Software Safety, NASA Technical Standard. NASA-STD-8719.13A, September 15, 1997
http://satc.gsfc.nasa.gov/assure/nss8719_13.html

[6] Selic, B. and Rumbaugh, J. “Using UML for modeling complex Real-Time systems”, ObjecTime,
Ltd., White Paper. http://www.ObjecTime.com/otl/technical/umlrt.html

[7] The Unified Modeling Language v1.3.
http://www.rational.com/uml/resources/documentation/index.jsp

[8] Yacoub, S., Ammar, H. “A Methodology for Architectural-Level Risk Assessment using
Dynamic Metrics”, Proc. of the 11th International Symposium on Software Reliability
Engineering, ISSRE’00, IEEE Comp. Soc., October, 2000.

[9] Yacoub, S., Ammar, H. and Robinson, T. “Dynamic Metrics for Object Oriented Designs”,
Proc. of the Sixth International Symposium on Software Metrics, Metrics’99, Boca Raton,
Florida USA, November 4-6 1999, pp.50-61.

[10] <DFRXE� 6�� &XNLF� %� DQG $PPDU� +� ´6FHQDULR�EDVHG 5HOLDELOLW\ $QDO\VLV RI &RPSRQHQW�
%DVHG 6RIWZDUHµ� 3URF� RI WKH 7HQWK ,QWHUQDWLRQDO 6\PSRVLXP RQ 6RIWZDUH 5HOLDELOLW\
(QJLQHHULQJ� ,665(·��� %RFD 5DWRQ�)ORULGD 86$� 1RYHPEHU ��� ����� SS�������

