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Abstract

Because it codifies best practices, and because it supports various forms of software reuse, the discipline of software architecture is emerging as an important branch of software engineering research and practice.  Because architectural-level decisions are prone to have a profound impact on finished software products, it is important to apprehend their quality attributes and to quantify them (as much as possible).  In this paper, we discuss an information-theoretic approach to the definition and validation of architectural metrics, and illustrate our approach on a sample example.
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1. Introduction

Software Architecture is emerging as a key paradigm in modern software engineering, because of its ability to codify best practices of software structuring into recognizable abstractions. Software Architecture owes further importance to another factor, which is its role as a crucial vehicle for software reuse in its various forms (product line engineering, COTS based software development, Component Based Software Engineering, etc): The only way that a producer and a consumer of software assets can communicate, to ensure that assets developed by the producer can be usable by the consumer, is for them to share a common architecture of target applications.  The architecture captures the scope of reusable assets (their boundaries within host systems), as well as the inter-component protocols that must be followed to ensure that reusable assets are integrated smoothly into their host applications. Because software architectures play a crucial role in the engineering process of software products and product families, it is important to apprehend their quality attributes and attempt to quantify these attributes  ---or at least those aspects of the quality attributes that lend themselves to
quantification. In this paper, we discuss an approach to the definition and analysis of architectural
level metrics, using Shannon's information theory.

2. Software architecture measurement

In this section we describe a model for measuring software architecture quality. This model is a generalization of McCall’s [
], Dromey’s [
] and Morasca and Briand’s frameworks [
] for software quality to the architectural level. McCall's model of software quality defines a three-level hierarchy of software attributes. The first level is a set of generic qualitative attributes for the software product, which are frequently referred to as external quality attributes.  These include reliability, maintainability and reusability attributes. The second level is a decomposition of each external software quality attribute into a set of quantitative factors that affect that external attribute. Finally, the third level is a set of computable metrics that we measure from the software product artifacts (such as architecture, design, or code) where each metric affects one or more quantitative factor. We define these factors in the rest of this section.

Since internal quality attributes can be directly measured, the first step in our research was to define computable metrics based on Shannon’s information theory. Such metrics reflect information aspect of coupling and cohesion phenomena. Guided by our theoretical framework, we were able to define these metrics (Section 3).

2.1 Quantitative factors

The idea of introducing quantitative factors is not entirely new. Some researchers dealt with fault propagation [
], error propagation [
] and change propagation [
].  In this research we study impact that such factors make not only on the source code or a particular artifact, but also (and more importantly) to the overall software architecture. Moreover, we give formal definitions to each quantitative factor. The longer term goal of our research is to strive to provide analytical connection between quantitative factor measurements and computable metrics, thus establishing basis for evaluation of internal quality attributes such as coupling and cohesion early in the development lifecycle, which in turn provides a technique for software architect to understand impact on external quality attributes early. 

We have tentatively identified three quantitative factors, reviewed briefly below. 

We use formal definitions to correlate quantitative factors with the appropriate computable metrics. At this phase, we are more concerned with defining what we want to measure, as quantitative factors affecting the external quality attributes, rather than with how to measure it. The question of how to measure (approximate/ estimate/ predict) these quantitative factors is the subject of the discussion in the next subsection. 

2.1.1. Error propagation. Consider two architectural components, say A and B communicating through some sort of connector. Every act of A-to-B communication consists of passing from A to B a message selected from certain vocabulary (A(B (for example, if the connector is realized in the form of method invocations, then set (A(B can be thought of as the range of values of the “aggregate parameters” of all methods of B through which A may transmit information to B). Let SA be the set of states of module A, and SB be the set of states of module B.  When A transmits to B a message 
Let  v( (A(B  it, in general, results in B changing its state, thus defining the state transition mapping F : SB ((A(B ( SB 
. Assuming that the system in question operates deterministically, F( x, v ) represents the state of  module B after receiving message from A if the state of B before the transmission occurred was x. For the sake of convenience, we will sometimes write F( x, v ) as a function of one variable v only, i.e. as Fx( v ), assuming the pre-transmission state x to be fixed. Now suppose an error occurs in A and instead of transmitting v to B it sends v’. The error propagates into B if the (post-transmission) state of B resulting from receiving the corrupted message v’ differs from the state which would result from receiving the correct message v, i.e. if  Fx( v) ( Fx( v’). 

Definition 1: We define the error propagation as the probability that a random error in the data transmitted from A to B results in an erroneous state of B (assuming the pre-transmission state to be random as well), i.e. 

 EP(A(B) = Prob(Fv(x, v’) ( Fv(x, v)| x( SB ; v, v’( (A(B , v' ( v ) .
Error propagation from A to B reflects the likelihood that an error in component A causes an error in component B, given that A feeds information to B.

2.1.1 Change propagation

We consider two architectural components, say A and B, and we let S be the overall system that contains A and B (possibly along with other components). We consider the scenario where, following a change request, we find that we must change A into A'; and we ponder the question of whether B must be changed consequently

Definition 2 The change propagation from A to B in S is defined as the following conditional probability: 

CP (A; B) = P(B ( B' |( A ( A') ^( S = S') ),

where S' is the system obtained from S by replacing A by A' and B by B'.

2.1.2 Requirements propagation. We consider two architectural components, say A and B, and we let S be the overall system that contains A and B (with possibly other components). We consider the scenario where, following a change request, we have determined that we must change A into A', in order to accommodate a variation S' of S. We ponder the question whether B must also be changed as a result of changing A. 

Definition 3 The requirements propagation from A to B in S is the conditional  probability

 RP (A ; B ; S)= P(B' ( B | (A' ( A) ^ (S' ( S)),

where S' is obtained from S by replacing A and B by (respectively) A' and B'. 

While change propagation (presented in Definition 2) deals with corrective maintenance, requirements propagation (presented in definition 3) deals with adaptive maintenance.

It is easy to see how these three quantitative factors can be used to assess such qualitative attributes as: maintainability, reusability, reliability, etc.

3. Information Coupling and Cohesion Metrics

Our intention in this paper is to present a construction for coupling / cohesion metrics at a sufficiently high level of abstraction in order to make it flexible enough to accommodate, as partial cases, the metrics specifically designed for the study of various aspects of information exchange in the architecture (e.g. data or control metrics), of various methods of data collection (e.g. static or dynamic) or various architectural views (such as conceptual, module, execution or code view see e.g. [
], [
]). In this spirit, let us consider our architecture A (or, rather, its aspect which is of interest to us) as a hierarchical multi-level network of components some of which are connected by connectors that serve as information transmitting channels. We model the variety of information packets transmitted by components to each other via the connectors by probabilistic ensembles (random variables), and then use the classical Shannon entropy [
] to measure information content (amount of uncertainty) of such ensembles.

Suppose the architecture A in question has the nested, tree-like hierarchical structure. The lowest level (level 1) in the hierarchy is occupied by the so-called primitive components, which do not contain any components, but, instead, have methods (or, using Rapid terminology, features [
]) through which such components exchange information with each other. For any component A in A denote by Sub(A) the set of sub-components of A. Then the following properties clearly hold:

· Sub(A) = ( if and only if A is primitive;

· for every two components A(B we have Sub(A)((Sub(B) = ( (this implies, in particular that for every component C  there is at most one A such that C ( Sub(A);

· if B(Sub(A), then A(Sub(B).

Notice that the relation 
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 B ) (  (A(Sub(B)) is a well founded ordering (see e.g. [MacLane]) on the set N of all components in A. We can now stratify the set N by setting:

· the first level N1 consists of minimal elements of N with respect to the ordering 
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, i.e. the set of primitive components ;

· the i-th level Ni (i(2) is defined recursively by Ni = { B(N | ( A(Ni-1 ( A 
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Thus, all components of the architecture are stratified into a number of non-overlapping levels: N = 
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Ni;  (i(j) ( (Ni ((Nj = (). The top level NL consists of components which are not subcomponents of any other component. Our coupling/cohesion metrics are, mainly, intended to deal with level slices of architecture A, i.e. the network of components at the same hierarchical level Ni and connectors between them.

3.1 Information Coupling 

Let A, B ( Ni be two different level i components (i ( 1) which are linked by a connector which serves as the information transmitting channel between them. With every such connector we associate the non-empty set TAB which represents the vocabulary of all allowable instantaneous information transmissions that A can pass to B. Note that the set is chosen based on the aspect of communication in the system that is to be studied  (e. g. data or control flow).  Now, suppose there is a probability distribution PA(B on TAB which encapsulates relative frequencies of different transmissions ((TAB. Thus, we have the probabilistic ensemble (TA(B, PAB), (which we call A-to-B information flow ensemble) describing the flow of relevant information from component A to component B. Further in the section we will introduce the control coupling and the data coupling by giving different interpretations to set TA(B. We will also discuss different approaches to evaluating probability distribution PAB resulting in the notion of static and dynamic coupling. Now we define the abstract concept of A-to-B information coupling without explicitly specifying the concrete interpretation of the ensemble (TA(B, PAB), but viewing it as an abstract random variable encapsulating the information contained in one transmission from A to B. Then we define coupling between module A and module B as the Shannon entropy [Shannon] of the ensemble, which Definition 1. For a connected pair of architectural components on the same hierarchical level A,B(Ni A-to-B information coupling is defined as the entropy of the A-to-B information flow ensemble, i.e. it is, given by the formula

CPLA(A, B) = H(TA(B, PA(B) = 
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If the pair A,B(Ni is not connected, we set CPLA(A, B) = 0.

Notice the asymmetry of the definition: in general CPLA(A, B) ( CPLA(B, A). A more detailed analysis of properties of the information coupling and cohesion is given in the next section.

3.2 Information Cohesion 

The definition is different for primitive (level 1) components, and for higher (level i > 1) components through coupling & cohesion of level (i– 1) components.

3.2.1. Information Cohesion of Primitive Components. First we define the information cohesion for primitive components. In order to define the information cohesion of a primitive component A(N1, we consider the information flow within A. Let TA represent the vocabulary of all instantaneous information transmissions that can be passed within A. (Speaking in terms of modular view, TA represents information transmissions between various features or methods of A.) Again, suppose we have a probability distribution PA on TA which encapsulates relative frequencies of different transmissions x(TA. We then obtain the internal information flow ensemble of A (TA, PA), and, define the information cohesion of unit A in the same spirit as we defined the coupling above. 

Definition 2. The information cohesion of primitive component 
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 is defined as the entropy of the internal information flow ensemble of A, i.e. by the formula

COHA(A) = H(TA, PA) = 
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The terminal components are the ultimate information transmitting/receiving agents, and the terminal level connectors are the ultimate information transmitting channels. This is the reason why the cohesion for primitive components is defined directly. On the other hand, for higher level components, is defined via the coupling between various pairs of its subcomponents.

3.2.2. Information Cohesion of Higher Level Components. We now proceed to define the information cohesion for a non-primitive component A(Ni, i ( 2. We follow the paradigm which views the cohesion as some kind of intra-modular coupling (cf. e.g. [
]). The terminal components are the ultimate information transmitting/receiving agents, and the terminal level connectors are the ultimate information transmitting channels. This is the reason why the cohesion for primitive components is defined directly. On the other hand, when dealing with a higher level component, one may not have direct access to the information exchanging agents (which may lie several levels deeper). Thus, the information cohesion is defined via coupling between various pairs of its subcomponents. Let QA(B(), , (Sub(A), ( be the conditional probability that the information passes exactly through -to- sub-connector, given it is known that some subcomponent of A sends information to another subcomponent of A, i.e. the probability distribution {QA(B()| ,(Sub(A), (} captures the relative likelihood of activation of different connectors inside A once it is known that a communication occurs within A. This distribution must, of course, must satisfy the standard probability axioms: 

  1( QA(B() ( 0 for all , (Sub(A), 

and  
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Notice, that the number of pairs (, ( Sub(A), ( and, hence, the number of probability values needed to describe the distribution equals s2 – s, where s = |Sub(A)|. We are now in the position to define the A-to-B information cohesion.

Definition 3. For a level i component A(Ni (i ( 2) the information cohesion of A is defined as the weighted sum (mean) of pair-wise couplings between sub-components of A:

CPLA (A, B) = 
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Thus we define the information cohesion of a composite component A as a probabilistically weighted sum (the mean) of coupling values between pairs of its subcomponents.  

By giving a particular interpretation to the transmission vocabulary TA(B (or TA) and the probability distribution PAB (or PA) on it, the general concept of information coupling/cohesion can be meaningfully applied to various aspects of information flow in the architecture. Next, we apply the construction above to define the control and data information coupling & cohesion metrics. 

3.3 Control Coupling and Cohesion 

Let us first consider the control flow in A. Here our Interpretation of the general approach presented above will be based on rather concrete and implementation-specific model suggested by the Rapid AMD which has been used in our experimental study (Section 5). The model, in fact, embodies a more universal idea of using interface-based communication to ensure encapsulation of private information within components. In the framework of this model any non-primitive component A( N \ N1 has a special primitive subcomponent IA( Sub(A)((N1, called interface subcomponent, which is used by non-terminal components for external communication with each other. Let Fprov(IA) be the set of all provided features (methods) of the interface component IA.  Let A, B ( N \ N1 be any pair of non-primitive components. To define the control information coupling which would describe the control flow aspect of the A-to-B communication, we interpret the A-to-B information flow ensemble as follows. Let 
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= Fprov(IB), i.e.  the control flow ensemble, whose information content we intend to measure, is defined on the set of provided features Fprov(IB) of the interface of the receiver component B. This approach is motivated by the idea that module A passes control information to B by “choosing” to request one of its provided features.  The probability distribution 
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 on N(B) is defined so that PA(B(f) reflects the relative likelihood for the particular feature f(Fprov(IA) to be requested by A.  For a pair of primitive nodes  A, B (N1 we set 
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 with the set of provided features of the receiver component itself; the probability distribution 
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 = Fprov(B) is defined in the same natural manner as for the non-primitive components above.

Now we simply apply the abstract Definition 1 to the control information flow ensemble (
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), in order to define the control information coupling.

Definition 4. For two connected nodes A, B at the same hierarchical level the A-to-B control information coupling is defined as the entropy of the A-to-B control information flow ensemble: 

CPLcontrol(A, B) = H(
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If there is no connector from
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 to 
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, we set CPLcontrol(A, B) = 0.   

The control information cohesion for a non-primitive component is defined by straightforward rewriting of Definition 3. The definition of control information cohesion for a primitive component A(N1 is obtained by applying Definition 2 to the ensemble (
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represents relative likelihood for various particular feature f(Fprov(A)  of A to be requested by other features in A. Thus, the entropy of the ensemble (
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3.4 Data Coupling and Cohesion 

Now let us look at the data exchange between modules of A and define the corresponding information coupling and cohesion metrics which reflect this aspect of information flow in the architecture. Let A, B (Ni be a pair of non-primitive components at hierarchical level i ( 2. For every feature f(Fprov(IB) let VAB (f) be the entire range of possible values for the vector of data (parameters) that can be transmitted from A to B when A calls B and requests feature f. Similarly, for g(Fprov(IA) let V AB (g) be the entire range of possible values for the vector of data (parameters) that can be transmitted from A to B when B calls A and requests feature g. One should keep in mind that data can be transmitted from A to B both when A calls B and when B calls A. At the code level, V AB (f) for f(Fprov(IB)  is the Cartesian product of legal value ranges for all parameters (variables) supplied by A when it calls f. Then we construct our A-to-B data flow ensemble AB as the union of the ranges V AB (f) for all provided features f of A and B, i.e. 


[image: image28.wmf]data

B

A

T

®

= 
[image: image29.wmf](f)

V

B

A

B

F

A

F

f

prov

prov

®

È

Î

U

)

(

)

(

. Thus defined, the ensemble AB incorporates all possible instances (“generalized values”) of packets of data that the module B is capable of receiving from A. Then we introduce on 
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 that reflects the relative likelihood for different data packets (values) ((
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 to actually be transmitted in the system. To avoid unnecessary repetitiveness we do not discuss the (quite obvious) adjustments of the above definitions that need to be made in the case when A and B are primitive components.

By applying the Definition 3 to the A-to-B data information flow ensemble (
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), we arrive at the definition of the data information coupling.

Definition 5. For two connected nodes A, B at the same hierarchical level the A-to-B data information coupling is defined as the entropy of the A-to-B data information flow ensemble: 

CPLdata(A, B) = H(
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The data information cohesion for a non-primitive component is defined by straightforward rewriting of Definition 3. The definition of control information cohesion for a primitive component A(N1 is obtained by applying Definition 2 to the ensemble (
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are defined in an obvious way to reflect the information content of the data flow between various features of A (see end of Paragraph 3.4), so we leave the details to the reader.

4. Related work
Software architecture is evolving as a beneficiary discipline in the development of software applications in general [
], [
] and for product lines in specific [
]. This has resulted in a significant amount of research to model architectures using Architecture Description Languages (ADLs) such as Rapide [
], and an increasing demand for evaluating the quality of software architectures. Architecture analysis and evaluation techniques are mostly qualitative and have special focus on application architecture with little emphasis on reusability issues in product line reference architectures. We also used [
] and [
] as a reference of quality measures. Interesting approach for characterization of quality attribute is presented in [
].

Software Architecture Analysis Method (SAAM). SAAM [
] is an evaluation method for software architectures that is used to assist in evaluating competing architectures for a software system. SAAM is a method for coarse-grained evaluation of software architectures with respect to specific desired system quality attributes. These specific attributes are derived from usage scenarios [
]. For each scenario, a ranking of the architecture being evaluated is developed. The ranking could be as simple as evaluating whether the candidate architecture supports the scenario or not. An obvious defect in this approach is the lack of formalization, optimization, and quantitative measures.

Architecture Trade-Offs Analysis Method (ATAM). The ATAM research [
], [
] focuses on the development of techniques and models to assess and evaluate architectures. Architectures possess attributes such as performance, modifiability, maintainability, security, etc.  The emerging ATAM method is based upon a set of quality attributes.  Some of these attributes are analytical (performance and availability) and others are qualitative, based upon formal inspections (modifiability, safety, and security). The ATAM is aimed at establishing proven techniques for predicting the impact of software architecture decisions on selected product quality attributes such as performance, robustness, and modifiability. In ATAM, each component is assigned a quality measure that is a combination of the quality attributes gathered from answers to the attribute-specific questions. The ATAM approach helps in discovering risks at early development and design stages, and in defining sensitivity and trade-off points (points where one change could affect multiple attributes) in a candidate architecture. Although the technique formalizes the steps of evaluating an architecture, it is still mostly qualitative.

In summary, we concur with Bergery [
] to the conclusion that current methods of architectural analysis are primarily qualitative; whence we need to focus more attention on quantitative approaches.

5. Summary and Prospects 

In this paper, we have presented a hierarchy of definitions for cohesion and coupling of components in software architecture.  All our metrics are defined as (or based on) entropies of some probabilistic ensembles (random variables). Those are, in turn, defined to reflect static and dynamic properties of the architecture at hand, with respect to data exchange and control exchange between architectural components. 

Because this work is in its infancy, we cannot offer any empirical validation of the metrics that we propose. However, we feel that the rationale of these definitions and the inherent symmetries that we have attempted to achieve among them provides some confidence in their adequacy.  Nevertheless, we do plan for their empirical validation in our future research.

The empirical validation that we envision will establish correlations between the proposed (computable) metrics and the quantitative factors discussed in Section 2.  Longer-term goals include the analysis of the correlation between quantitative factors and qualitative attributes; and the automation of the derivation of computable metrics by means of syntactic and semantic analyzers that process architectural descriptions written in an ADL augmented with probabilistic annotations.
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