
Modeling resources in a UML-based simulative environment

Hany H. Ammar, Vittorio Cortellessa, Alaa Ibrahim

Computer Science and Electrical Engineering Department

West Virginia University, Morgantown, WV, 26506-6109

email:fammar,vittorio,Ibrahimg@csee.wvu.edu

Abstract

The importance of early performance assessment grows

as software systems increase in terms of size, logical dis-

tribution and interaction complexity. Lack of time from the

side of software developers, as well as distance among soft-

ware model notations and performance model representa-

tion do not help to build an integrated software process that

takes into account, from the early phases of the lifecycle,

non functional requirements. In this paper we work towards

filling this gap by extending the capabilities of a simulative

environment developed for the UML notation. Out intent

is to introduce new stereotypes representing performance

related items, such as resource types and job dispatchers.

They allow the software designers to homogeneously repre-

sent a software architecture integrated with a running plat-

form as well as parameterized with the resource demand

that the components require.

Keywords: Unified Modeling Language, Rose Real Time

tool, performance model simulation, resource modeling.

1. Introduction

The validation of non functional requirements early in

the lifecycle is an as important as difficult task to accom-

plish. Early performance assessment mostly allows to build,

from the very beginning, software that better fulfills perfor-

mance requirements, hence helps to reduce the risk of late

rising of poor performance that would be hard to manage.

In the last few years Unified Modeling Language (UML)

rapidly emerged as a standard notation for software mod-

eling. Its success mostly relies on few elementary charac-

teristics: different diagrams are provided (in an integrated

framework) to represent the software model from different

viewpoint, so explicitly specifying software aspects else-

where hidden; the language is supported by a graphical rep-

resentation, easy to use; no standard software development

process is coupled to the notation, thus software designers

may decide to use whatever subset of diagrams better fits its

application requirements, and organize an application ori-

ented software process.

The necessity to provide a standard representation of

information related to the performance (e.g., resource de-

mand) in the UML framework is therefore ever more se-

vere [24]. As a consequent step, this would makes easier

to transfer UML models from design to performance anal-

ysis tools [17]. Besides, UML was explicitly born as an

“open” project [24], with the potential of embedding addi-

tional notations and tools to satisfy specific design requi-

sites. Along this trace, the joint effort of Rational Software

(the UML originator) and ObjecTime Limited (the Real-

Time Object Oriented Modeling originator) has produced

Rational Rose Real Time(RRT), an environment to run sim-

ulations of UML specified models, which is based on the

UML-RT notation [25].

Several approaches for extending the UML notation to

embed performance related information have been recently

introduced.

In [16] Sequence Diagrams are considered and a simu-

lation tool prototype(based on them) is presented. The re-



sulting simulation consists of an animated Sequence Dia-

gram as a trace of events. A similar approach is presented

in [1] where a simulation framework, SimML, is used to

generate simulation programs from Class and Sequence Di-

agrams along with some random and statistics information.

In [5, 6] has been proposed the use of a Collaboration

Diagram with State Diagrams of all possible objects embed-

ded within them. All possible behaviors of the system are

captured. Starting from this new combined diagram a Gen-

eralized Stochastic Petri Net model is generated. The direct

generation of a continuous time Markov chain starting from

Collaboration and State Diagrams is also investigated in [6]

through a simple example.

In [10, 11] the extension of the UML notation to per-

formance annotations (pa-UML) has been proposed to deal

with performance of software systems. A set of transfor-

mation rules is then given to obtain Generalized Stochastic

Petri nets from pa-UML diagrams. Performance indices are

derived from classical analysis techniques.

A framework that allows UML diagrams to be used for

building performance models is presented in [4]. Perfor-

mance modeling is carried out basing on a precise textual

notation, called Performance Modeling Language, to repre-

sent the UML characteristics relevant to performance mod-

els. These UML based performance models are then trans-

formed into stochastic queueing networks with simultane-

ous resource possession.

A different type of performance annotation on UML di-

agrams is carried out in [3]. In this paper the component

interconnection patterns of client/server systems are inves-

tigated (to derive performance information) by use of Class

diagram and Collaboration Diagrams. These UML dia-

grams are annotated using an XML-type notation with pa-

rameters related to workload and service demand. A queue-

ing model is then derived and analyzed to obtain the perfor-

mance indices of interest.

Performance models and UML diagrams are also the

topic of [2], where a methodology is proposed (and applied

to distributed systems in [12]) to derive a queueing network

based performance models from a set of UML diagrams.

This methodology makes use of: the UML Use Case Di-

agram, the Sequence Diagrams and the Deployment Dia-

gram. This set of diagrams is integrated with a set of pa-

rameters derived from the designer experience to obtain a

quite accurate performance model.

Tailoring the derivation of a performance model on a

specific application domain, such as Client-Server systems,

is the goal of [9], where a methodology is introduced to

make the distance between software developers and perfor-

mance analysts shorter.

The derivation of performance models, based on Layered

Queueing Networks (LQN), using graph transformation is

presented in [13, 14, 15].

In this paper we exploit the simulative potential of the

RRT tool to run software models that include items and pa-

rameters related to the performance of the model. The set

of stereotypes that the UML-RT tool provides has been ex-

tended. The extension aims at building (a library of) new

stereotypes that allow the representation of resource related

items (such as CPUs, disks, etc.), in order to integrate in

the same scheme the software structure and the resource re-

quests of a software product.

2. An idea of UML-RT notation extension

UML-RT notation [25] essentially comes from merging

theReal-Time Object Oriented Modeling(ROOM) [18] and

the UML basic notations. ROOM models are intended for

simulating the application execution scenarios and the com-

plex object behavior. With the support of UML State Dia-

grams, executable design models are obtained, and simula-

tion allows to infer their real-time properties, such as dead-

lines and scheduling constraints.

Three principal constructs are used to explicitly describe

a software architecture, that are: Capsules, Ports and Con-

nectors (their name are self-explaining their roles). Dy-

namic behavior is modeled by using Protocols and State

Machines. A Protocol specifies the desired behavior over

a connector. A State Machine specifies the internal behav-

ior of a capsule, with the communication capability. (1).

A typical early model of a software product is known as

a software architecture, that is essentially a graph whose

1This capability is achieved by explicitly introducing statements (e.g.,

sendandreceiveprimitives) in state transitions, such that those transitions

may have an additional remote effect of sending a message and, therefore,

firing a state transition in a different State Diagram.



nodes represent software components and arcs represent

software connectors. In order to provide the potential to

represent the same software at different levels of detail, a

software architecture can be hierarchically structured.

UML notation does not explicitly provide a diagram to

describe a software architecture, which is in fact not nec-

essary. The RRT tool allows to build a diagram of compo-

nents and connectors, where each component is represented

by a capsule with ports to which connectors are associated

to exchange messages with other capsules. A hierarchical

structure is also provided to this software architecture rep-

resentation, by allowing to detail the internal structure of a

capsule with other capsules and connectors (see figure 1).

Figure 1. Capsules and connectors in RRT.

The simulative nature of the RRT tool requires as a min-

imum, in order to run such a scheme, a dynamic descrip-

tion of the behavior of each capsule belonging to the lowest

levels of the hierarchy, that is each capsule that does not

contain other capsules. This is achieved by providing State

Diagrams of capsules, that follow the classical UML nota-

tion for State Diagrams.

In order to represent in the same capsule diagram the

software architecture and the resources that the software

components require, we have conceptually split the diagram

in two sides: thesoftwareside and theresourceside (see fig-

ure 2). Capsules are in both sides, but while the ones in the

software side represent software components, the resource

side capsules represent the resources that the considered ar-

chitecture may need.

The strength of the RRT tool consists of using the dy-

Figure 2. Two-sides capsule diagram.

namic description of the internal behavior of each capsule

(i.e., the State Diagram of a capsule) to simulate the whole

software behavior. This feature has been used for verifi-

cation and validation of timing constraints [20], reliability

analysis of component based software [21], dynamic com-

plexity and dynamic coupling analysis [22], and architec-

tural level risk assessment [23].

Upon the extension of the software architecture illus-

trated by the scheme in figure 2, a properly parameterized

simulation of such scheme allows to evaluate the perfor-

mance of the combined software architecture/resource sys-

tem. To achieve this objective we have built a basic structure

of the resource side of the scheme, and we have started to

provide standard capsule stereotypes to be used in the re-

source side.

In the upper side of figure 3 the capsule diagram of the

basic structure that we propose for the resource side of the

scheme has been drawn. This basic structure is intended to

be used, as it is, wherever a resource side is necessarily to

be coupled to a software side. So, for example, the capsule

diagram represents the internal structure of both resource

sides of figure 2, namelyResource1 and Resource2. It

is basically composed by aMain Dispatcherand a set of

resource types.

The main dispatcher is the capsule (2) in charge of re-

ceiving resource requests from the software side. We sup-

pose (like in a Software Performance Engineering approach

2From now on “capsule” and “component” are synonyms, even if the

former is mostly a notation related name.



Figure 3. Basic structure of the resource side.

[19]) that every resource request has been produced by a

software block (that is a set of operational steps), and in-

cludes the amount of every resource type needed to ex-

ecute that software block (e.g., number of CPU instruc-

tions, number of disk blocks, bytes to be transferred on a

network, etc.). Upon receiving a request, the dispatcher

schedules the needed visits to the resource types. TheRe-

sourceInterfaceport in figure 3 is a multiple port, as this

contributes to the generality of our scheme with regard to

the number of resource types that can be considered. Fig-

ure 3 show examples of types of resources, and how this

scheme allows to add (delete) a resource type by simply

introducing (eliminating) a new capsule and modifying the

ResourceInterfacemultiplicity.

The internal structure of any resource type capsule is

quite standard as well. As shown in figure 3, where the

CPU Resourceshas been graphically expanded, every re-

source type capsule contains anInternal Dispatcherand a

set of actual resource instances. In the figure we show, as an

example, the case of four CPUs, where four is the multiplic-

ity given to theCPU capsule (i.e., the number of resource

instances) and the multiport connecting them to theInternal

Dispatcher. Upon this “low level” dispatcher receiving a re-

quest of a specific amount of resource type it manages, bas-

ing on prior knowledge (e.g., speeds of different resource

instances, queue lengths, previous request distribution) it

schedules a job for a resource instance and notifies it by

sending a message to the latter. When the requested amount

has been consumed in the resource, the notification is sent

back to theInternal Dispatcherand then forwarded to the

Main Dispatcher; the latter checks whether the complete

resource request of the software side has been satisfied or

other resource types remain to be consumed.

Basically in figure 3 three new stereotypes (as capsules)



have been introduced: a high level dispatcherMain Dis-

patcher, a low level dispatcherInternal Dispatcher, and a

CPU resource. In the lower side of the figure the State Dia-

grams of these stereotypes are shown.

For sake of conciseness and readability, we do not dis-

cuss the details of the dispatchers’ State Diagrams, rather

we focus on theCPUone. The CPU is modeled as a queued

service center that extracts jobs from the queue following a

quantum based round-robin strategy [7, 8]. In the “idle”

state the queue is supposed to be empty and no job is being

served. Upon the arrival of a job, the CPU becomes “busy”

and it returns to the idle state in any moment the queue is

idle and no job is being served. Two state transitions orig-

inate from the busy state. In case of a new job arrival the

corresponding transition only serves as update of the queue

length and contents. In case of a job departure from the ser-

vice center (either due to the quantum expiration or due to

the end of service requested) there are two conditions to be

orderly checked, namelyCP1 andCP2. First the residual

amount of resource requested is read: if zero then the job

has been completely processed and it can leave the CPU,

else it has to be queued again (i.e., round-robin strategy) in

order to be served later for at least one more quantum. In

case of job processed an additional check is needed: if there

is at least one job waiting into the queue then the first job is

extracted and processed (i.e., the CPU goes again in a busy

state), else the CPU returns to the idle state.

In a similar way a capsule stereotype can be introduced

for any type of resource type that contributes to build up a

(possibly distributed) modern hardware platform (e.g., mass

storage, wired network, etc.), provided that the correspond-

ing State Diagram is also given. In any case the resource

side of our scheme is open to represent whatever number

of resource types with whatever number of instances, the

only bound being the actual scalability of the modeled soft-

ware/resources system.

3. Conclusion

We have introduced a new viewpoint in the early per-

formance validation of software systems. Instead of start-

ing from a software notation and translating it into a per-

formance model (as most of the existing approaches do),

we aim at migrating the resource representation into the

software model notation. This opposite approach not only

allows software designers to not modifying the modeling

process, but also avoids a (probably heavy) transformation

procedure to generate the performance model. By provid-

ing a set of prototypes representing different types of re-

sources, we allow to “plug-in” resources into the software

architectural model. The simulation of the integrated soft-

ware/resource model gives the values of the performance

indices of interest.

References

[1] Arief L.B. and Speirs, N.A.“A UML Tool for an Au-

tomatic Generation of Simulation Programs”,Proc.

of Second International Workshop on Software and

Performance, WOSP2000, September 2000, Ottawa,

Canada, 2000.

[2] Cortellessa, V. and Mirandola R. “Deriving a Queue-

ing Network based Performance Model from UML

Diagrams” Proc. of Second International Workshop

on Software and Performance, WOSP2000, September

2000, Ottawa, Canada, 2000.

[3] Gomaa, H. and Menasce, D.A.“Design and Perfor-

mance Modeling of Component Interconnection Pat-

terns for Distributed Software Architecture”,Proc.

of Second International Workshop on Software and

Performance, WOSP2000, September 2000, Ottawa,

Canada, 2000.

[4] Kahkipuro P. “ UML based Performance Modeling

Framework for Object-Oriented Distributed Systems”,

Proc. of Second International Conference on the Uni-

fied Modeling Language, October 28-30, 1999, USA,

LNCS, Springer Verlag, vol.1723, 1999.

[5] King, P. and Pooley, R. “Estimating the Performance

of UML Models using Petri Nets”, private communi-

cation, 1999.

[6] King, P. and Pooley, R. “Using UML to Derive

Stochastic Petri Net Models”,Proceedings of the Fif-

teenth UK Performance Engineering Workshop, De-



partment of Computer Science, The University of Bris-

tol, N. Davies and J. Bradley, editors, UKPEW ’99

July 1999.

[7] Lavenberg, S.S. “Computer Performance Modeling

Handbook”,Academic Press, New York, 1983.

[8] Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik

K.C., “Quantitative system performance : computer

system analysis using queueing network models”,En-

glewood Cliffs, N.J., Prentice-Hall, 1984.

[9] Menasce’, D.A., Gomaa, H. “A method for design

and performance modeling of client/server systems”,

IEEE Transactions on Software Engineering, vol.26,

no.11, November 2000.

[10] Merseguer, J., Campos, J. and Mena E. “Performance

Evaluation for the design of Agent-based Systems: A

Petri Net Approach”,Proc. of Software Engineering

and Petri Nets (SEPN 2000), June 2000, Aarhus, Den-

mark, 2000.

[11] Merseguer, J., Campos, J. and Mena E. “A Pattern-

Based Approach to Model Software Performance”,

Proc. of Second International Workshop on Software

and Performance, WOSP2000, September 2000, Ot-

tawa, Canada, 2000.

[12] Mirandola R. and Cortellessa, V. “UML based Per-

formance Modeling of Distributed Systems”Proc. of

Third International Conference on the Unified Model-

ing Language, October 2-6, 2000, York, UK, LNCS,

Springer Verlag, 2000.

[13] Petriu, D. “Deriving Performance Models from UML

Models by Graph Transformations”,Tutorials, Sec-

ond International Workshop on Software and Per-

formance, WOSP2000, September 2000, Ottawa,

Canada, 2000.

[14] Petriu, D. Shousha, C., Jalnapurkar, A. “Architecture

based Performance Analysis Applied to a Telecommu-

nication System”,IEEE Transaction on Software En-

gineering, November 2000, to appear, 2000.

[15] Petriu, D. and Wang, X. “Deriving Software Perfor-

mance Models from Architectural Patterns by Graph

Transformations”,Proc. of Theory and Applications

of Graph transformations, TAGT’98, LNCS 1764,

Springer Verlag, 1998.

[16] Pooley, R. and C. Kabajunga, ”Simulation of UML

Sequence Diagrams”Proc. of 14th UK Performance

Engineering Workshop, Edinburgh,R. Pooley and N.

Thomas Eds., UK PEW ’98July 1998.

[17] Selic, B. “A generic framework for modeling re-

sources with UML”,IEEE Computer, June 2000.

[18] Selic, B., Gullekson, G., Ward, P., “Real-Time Object

Oriented Modeling”,John Wiley & Sons, Inc..

[19] Smith, C.U. “Performance Engineering of Software

Systems”,Addison-Wesley, Reading, MA, 1990.

[20] S. Yacoub, A. Ibrahim, H. Ammar, and K. Lateef,

“Verification of UML Dynamic Specifications using

Simulation-based Timing Analysis”,Proceedings of

6th International Conference on Reliability and Qual-

ity in Design, ISSAT, Orlando, Fl, August, 2000,

pp.65-69.

[21] S. Yacoub, B. Cukic, and H. Ammar. Scenario-based

Reliability Analysis of Component-Based Software.

Proceedings of the Tenth International Symposium

on Software Reliability Engineering, ISSRE’99, Boca

Raton, Florida USA, November 1-4 1999, pp.22-31.

[22] S. Yacoub, H. Ammar, and T. Robinson. Dynamic

Metrics for Object Oriented Designs. Proceedings of

the Sixth International Symposium on Software Met-

rics, Metrics’99, Boca Raton, Florida USA, November

4-6 1999, pp.50-61.

[23] S. Yacoub, H. Ammar, ”A Methodology for

Architectural-Level Risk Assessment using Dynamic

Metrics,” to appear in Proceedings of the 11th Interna-

tional Symposium on Software Reliability Engineer-

ing, ISSRE’00, IEEE Comp. Soc., October, 2000.

[24] http://www.omg.org.

[25] http://www.rational.com/uml/documentation.html.


