
Designing with Patterns

John Vlissides

IBM T.J. Watson Research

vlis@watson.ibm.com

c
 1996{1999 by John Vlissides. All rights reserved.

Diagrams from Design Patterns: Elements of Reusable Object-Oriented Software c
 1995 by
Addison-Wesley Publishing Company. All rights reserved. Diagrams may not be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the publisher.

1

Introduction

Stages of Design Pattern awareness:

ignorance

initiation

understanding

consternation

familiarity

benefit

2

Objectives

Learn to apply design patterns to the design process

� �nd the right patterns

� understand (un)applicability

� see when and how to bend a pattern

� evaluate design trade-o�s e�ectively

Learn by (counter)example

3

Designing a File System

Running example

Design problems:

1. Structure

2. Symbolic links

3. Open-ended functionality

4. Single-user protection

5. Multi-user protection

6. Noti�cation

4

File System Structure

Problem:

� represent �le system elements (�les, directories)

� for end-user: �le system of arbitrary size and complexity

� for programmer: easy to deal with and extend

/

tom/ dick/ harry/

user/ tmp/

junk

bin/

ls

5

File System Structure (cont'd)

Tree structures ! Composite pattern

Rule of thumb

Choice hinges on importance of uniformity and extensibility

Application issues:

� choosing participants: Component, Leaf, and Composite

� choosing operations to treat uniformly

6

File System Structure (cont'd)

Composite object structural

Intent

treat individual objects and multiple, recursively-composed objects uniformly

Applicability

objects must be composed recursively,

and there should be no distinction between individual and composed elements,

and objects in the structure can be treated uniformly

Structure

children
CompositeLeaf

Component

operation()
add(Component)
remove(Component)
getChild(int)

operation() operation()
add(Component)
remove(Component)
getChild(int)

forall g in children
 g.operation();

7

File System Structure (cont'd)

Composite (cont'd) object structural

Consequences

+ uniformity: treat components the same regardless of complexity

+ extensibility: new Component subclasses work wherever old ones do

� overhead: might need prohibitive numbers of objects

Implementation

� do Components know their parents?

� uniform interface for both leaves and composites?

� don't allocate storage for children in Component base class

� responsibility for deleting children

Known Uses

ET++ VObjects

InterViews Glyphs, Styles

Unidraw Components, MacroCommands

8

File System Structure (cont'd)

Mapping Composite participants to �le system classes:

� Leaf, for objects that have no children

! File, the �le object

� Composite, for objects that have children

! Directory, the directory object

� Component, the uniform interface

! Node

children

Node

DirectoryFile

9

File System Structure (cont'd)

What can File objects do?

� return their name and protection

� stream their contents in and out

What can Directory objects do?

� return their name and protection

� enumerate their children

� adopt and orphan children

10

File System Structure (cont'd)

What uniform interface does Node de�ne?

� get name/protection

Obviously common

� stream in/out

Less-obviously common

� enumerate children

Needed for recursion, hiding internal data structure

Could apply Iterator instead

� adopt & orphan

Trade-o� between type safety and uniformity

11

File System Structure (cont'd)

Uniform adopt/orphan interface simpli�es clients

As long as Leaf objects can handle them gracefully

Example: mkdir

� \mkdir newsubdir"

! new newsubdir subdirectory

� \mkdir subdirA/subdirB/newsubdir"

! new newsubdir subdirectory of subdirB

12

File System Structure (cont'd)

Naive mkdir implementation

public void mkdir (Directory current, String path) {
String subpath = subpath(path);

if (subpath == null) {
if (find(path, current) == null) {

current.adopt(new Directory(path));
} else {

System.err.println(path + " exists.");
}

} else {
String name = head(path);
Node child = find(name, current);

if (child != null) {
mkdir(child, subpath);

} else {
System.err.println(name + " nonexistent.");

}
}

}

13

File System Structure (cont'd)

find searches for a child with the given name

Must return a Node

public Node find (String name, Directory current) {

Node child = null;

for (int i = 0; child = current.getChild(i); ++i) {

if (name.equals(child.getName())) {

return child;

}

}

return null;

}

14

File System Structure (cont'd)

But mkdir won't compile!

� mkdir takes a Directory, not a Node

� Using instanceof adds a control path

// ...

Node node = find(name, current);

if (node != null) {

if (node instanceof Directory) {

mkdir((Directory) node, subpath);

} else {

System.err.println(getName() + " is not a directory.");

}

} else {

// ...

15

File System Structure (cont'd)

Solution: Treat adopt and orphan uniformly

� declare them in Node interface

� de�ne default behavior

public abstract class Node {
public void adopt (Node child) {

System.err.println(getName() + " is not a directory.");
}

public void orphan (Node child) {
System.err.println(child.getName() + " not found.");

}
// ...

Only change to mkdir is its signature:

void mkdir (Node current, String path) { ... }

16

File System Structure (cont'd)

Result:

Node

children
DirectoryFile

getName()
getProtection()
streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

streamIn(istream)
streamOut(ostream)

streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

17

Symbolic Links

Problem:

� add symbolic link capability uninvasively

� should work across directories, �le systems, even machines

/

tom/ dick/ harry/

user/

richard/

18

Symbolic Links (cont'd)

Finding the right pattern

� consider how design patterns solve design problems

IOW, study section 1.6|no time today

� scan intent sections

brute-force

� study how patterns interrelate (\spaghetti diagram," etc.)

still too involved, but getting warmer

� ...

19

Symbolic Links (cont'd)

Finding the right pattern

� ...

� look at patterns of relevant purpose (creational, structural,
behavioral)

symbolic links suggest structural purpose

� examine a cause of redesign (listed on p. 24)

not worried about that just yet

� consider what should be variable in your design (Table 1.2)

20

Symbolic Links (cont'd)

Variabilities imparted by structural patterns

� Adapter: interface to an object

� Bridge: implementation of an object

� Composite: object structure and composition

� Decorator: responsibilities without subclassing

� Facade: interface to a subsystem

� Flyweight: storage costs of objects

� Proxy: how an object is accessed and/or its location

21

Symbolic Links (cont'd)

Proxy structure

Subject

...

RealSubject
realSubject

Proxy

...

request()

...
request() request()

...
realSubject−>request();
...

� Proxy is a stand-in for RealSubject

� Proxy must match Subject interface

22

Symbolic Links (cont'd)

Mapping Proxy participants to �le system classes:

� Subject, the interface to match

! Node

� Proxy, the stand-in class

! Link, the symbolic link object

� RealSubject, to which the proxy refers

! ???

Problem:
Don't want to commit RealSubject to either File or Directory

23

Symbolic Links (cont'd)

Solution: look at Proxy's description of the Proxy participant:

[Proxy] maintains a reference that lets the proxy access the
real subject. Proxy may refer to a Subject if the RealSubject
and Subject interfaces are the same.

! Node is the RealSubject

N.B.: this couldn't work without Composite's uniform interface!

24

Symbolic Links (cont'd)

Link implementation: delegate all operations to RealSubject

Example:

public class Link extends Node {

public Node getChild (int n) {

return _subject.getChild(n);

}

// ...

Additional Link-speci�c operation:

Node getNode () { return _subject; }

(for clients who know they are dealing with a Link)

25

Interlude

children

Node

File Directory
subject

Link

from Proxy pattern from Composite pattern

getName()
getProtection()
streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

streamIn(istream)
streamOut(ostream)

streamIn(istream)
streamOut(ostream)

streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

getChild(int)
adopt(Node)
orphan(Node)
getNode()

26

Open-Ended Functionality

Problem:

� clients want to do arbitrarily many operations on �le system
objects

cat, ls, du, chmod, chown, ...

� must avoid treating Node interface as a dumping ground

27

Open-Ended Functionality (cont'd)

Externalizing operations ! Visitor pattern

Choice hinges on stability of Element class hierarchy

Consequences:

+ recovers type information without downcasts

+ consolidates and encapsulates functionality in Visitor object

� new ConcreteElements may require changing Visitor interface

� circular dependency between Visitor and Element interfaces

28

Open-Ended Functionality (cont'd)

Visitor object behavioral

Intent

centralize operations on an object structure so that they can vary
independently but still behave polymorphically

Applicability

� when classes de�ne many unrelated operations

� class relationships of objects in the structure rarely change, but the
operations on them change often

� algorithms over the structure maintain state that's updated during traversal

Structure

ConcreteVisitor

ObjectStructure

ConcreteElement1 ConcreteElement2

Client

Visitor

Element

visitConcreteElement1(ConcreteElement1)
visitConcreteElement2(ConcreteElement2)

visitConcreteElement1(ConcreteElement1)
visitConcreteElement2(ConcreteElement2)

accept(Visitor)

accept(Visitor v) accept(Visitor v)

v.visitConcreteElement1(this) v.visitConcreteElement2(this)

29

Open-Ended Functionality (cont'd)

Visitor (cont'd) object behavioral

Consequences

+
exibility: visitor and object structure are independent

+ localized functionality

� circular dependency between Visitor and Element interfaces

� Visitor brittle to new ConcreteElement classes

Implementation

� double dispatch

� general interface to elements of object structure

Known Uses

ProgramNodeEnumerator in Smalltalk-80 compiler

IRIS Inventor scene rendering

30

Open-Ended Functionality (cont'd)

De�ning a CatVisitor (lists a �le)

1. De�ne NodeVisitor base class

2. Add accept operation to Node base class and subclasses

3. De�ne CatVisitor subclass of NodeVisitor

31

Open-Ended Functionality (cont'd)

public abstract class NodeVisitor {

public void visit(Node n) { } // default

public void visit(File f) { visit((Node) f); }

public void visit(Directory d) { visit((Node) d); }

public void visit(Link l) { visit((Node) l); }

}

accept operations:

public void Node.accept (NodeVisitor v) { v.visit(this); }
// => NodeVisitor.visit(Node)

public void File.accept (NodeVisitor v) { v.visit(this); }
// => NodeVisitor.visit(File)

public void Directory.accept (NodeVisitor v) { v.visit(this); }
// => NodeVisitor.visit(Directory}

public void Link.accept (NodeVisitor v) { v.visit(this); }
// => NodeVisitor.visit(Link)

32

Open-Ended Functionality (cont'd)

CatVisitor subclass implementation

public class CatVisitor extends NodeVisitor {

public void visit (File f) {

f.streamOut(System.out);

}

public void visit (Directory d) {

System.err.println("Can't cat a directory.");

}

public void visit (Link l) {

l.getNode().accept(this);

}

Usage:

CatVisitor cat = new CatVisitor();

node.accept(cat);

33

Open-Ended Functionality (cont'd)

What if Element hierarchy isn't stable?

Example: HardLink is a new subclass of Node:

public class HardLink extends Node {

public void accept (NodeVisitor v) { v.visit(this); }

// => NodeVisitor.visit(Node)

// ...

visit(Node) acts as catch-all

No problem if no visitor treats HardLink objects specially and/or
default behavior adequate

Otherwise, need RTTI...

34

Open-Ended Functionality (cont'd)

Example: CatVisitor must deal with HardLinks specially

1. Use RTTI in the element:

public void accept (NodeVisitor nv) {

if (nv instanceof CatVisitor) {

CatVisitor cv = (CatVisitor) nv;

cv.visit(this);

// => CatVisitor-specific visit(HardLink)

} else {

nv.visit((Node) this); // do the default

}

}

+ NodeVisitor subclasses unchanged if you update NodeVisitor interface

� new NodeVisitor subclasses force change in Node subclasses

? # branches proportional to # new NodeVisitor subclasses

35

Open-Ended Functionality (cont'd)

2. Use RTTI in the visitor:

public void visit (Node n) {

if (n instanceof HardLink) {

// do something special for hard links

} else {

super.visit(n); // do the default

}

}

+ Node subclasses unchanged if you update NodeVisitor interface
(assumes overloading)

� RTTI in potentially every NodeVisitor subclass

? # branches proportional to # new Node subclasses

36

Single-User Protection

Problem:

� protect �le system objects from inadvertent corruption

No defense against malicious corruption

� make nodes (un)readable and/or (un)writable

Approach should work for other protection modes, too

37

Single-User Protection (cont'd)

How do these protection modes a�ect a node's behavior?

� an unreadable node can't divulge its contents

! �les shouldn't respond to streamOut requests
! directories shouldn't enumerate their children

� an unwritable node can't be modi�ed

! shouldn't respond to streamIn

! (C++) must disable destructor

What patterns support these (anti)responsibilities?

38

Single-User Protection (cont'd)

Observation 1: Protection behavior must vary dynamically

� user can change protection at any time

� suggests a behavioral pattern, especially Strategy or State

� Decorator is a non-invasive alternative to Strategy

Observation 2: Access control suggests Proxy

39

Single-User Protection (cont'd)

Applying Strategy

NodeClient ProtectionStrategy

??? ??????

getName()
getProtection()
streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

How many strategy objects does a node use?

One per node, one per Node operation, ... ?

If multiple, how do they work together?

What do Node subclasses delegate to ProtectionStrategies?

State poses similar questions

40

Single-User Protection (cont'd)

Is Decorator any better?

Node

WriteProtectionDeco

ProtectionDecorator

ReadProtectionDeco

aReadProtectionDeco

aWriteProtectionDeco

aFile

getName()
getProtection()
streamIn(istream)
streamOut(ostream)
getChild(int)
adopt(Node)
orphan(Node)

getProtection()

streamOut(ostream)

streamIn(istream)

41

Single-User Protection (cont'd)

Decorator's drawbacks:

� When a node's protection changes, what happens to existing
references to it?

Object identity problem

� Lots more objects ! high overhead

Proxy has similar drawbacks

42

Single-User Protection (cont'd)

New observations:

� adding objects isn't helping

Delegation adds complexity

Objects add overhead

� Strategy, State, Decorator, and Proxy are all object patterns

How about using class pattern(s) to vary behavior?

43

Single-User Protection (cont'd)

Template Method

� can vary behavior of each operation independently in subclasses

� no object or delegation overhead

To apply it, determine variant and invariant parts

� invariant: determine current protection (read and/or write)

� variant: response (normal operation or nop/error message)

44

Single-User Protection (cont'd)

Template Method class behavioral

Intent

de�ne the skeleton of an algorithm in an operation, deferring some steps to
subclasses

Applicability

� to implement invariant aspects of an algorithm once and let subclasses
de�ne variant parts

� to localize common behavior in a class to increase code reuse

� to control subclass extensions

Structure

ConcreteClass

AbstractClass

templateMethod()
primitiveOperation1()
primitiveOperation2()

...
primitiveOperation1()
...
primitiveOperation2()
...

primitiveOperation1()
primitiveOperation2()

45

Single-User Protection (cont'd)

Template Method (cont'd) class behavioral

Consequences

+ leads to inversion of control (\Hollywood principle": don't call us|we'll
call you)

+ promotes code reuse

+ lets you enforce overriding rules

� must subclass to specialize behavior

Implementation

� virtual vs. non-virtual template method

� few vs. lots of primitive operations

� naming conventions (do- pre�x)

Known Uses

just about all object-oriented systems (especially frameworks)

46

Single-User Protection (cont'd)

Typical implementation:

public abstract class Node {

public final void streamOut (OutputStream out) {

if (isReadable()) {

doStreamOut(out);

} else {

doWarning(unreadableWarning);

}

}

// ...

isReadable, doStreamOut, and doWarning are primitive operations

47

Single-User Protection (cont'd)

Preventing deletion of unwritable node in C++:

1. Protect destructor

2. De�ne static void Node::Delete(Node*) as template method

3. Pass doomed node to primitive operations

Static doesn't have this

void Node::Delete (Node* node) {

if (node->isWritable()) {

delete node;

} else {

node->doWarning(undeletableWarning);

}

}

48

Multi-User Protection

Problem:

� extend protection scheme to support multiple users

� associate users with �les

� support named groups of users

Mimic the Unix �le system model

\user," \group," \other" protection modes

49

Multi-User Protection (cont'd)

Questions:

� how to model a user?

� how to authenticate a user?

� how does authentication impact node operations?

50

Multi-User Protection (cont'd)

Assume we model a user as an object

Natural metaphor

Stick with it until it proves unworkable

One User instance per \login name" (in Unix sense)

What can we do with a User object?

51

Multi-User Protection (cont'd)

More important: What can't we do with a User?

� identi�es a user to the system

� must prevent masquerade

! must control instantiation process

login name + valid password) User instance

52

Multi-User Protection (cont'd)

Encapsulating the instantiation process

A relevant creational pattern?

� Abstract Factory: no \families"; not averse to instantiating a
concrete class

� Builder: we're not varying the creation process

� Factory Method: see Abstract Factory

� Prototype: can't leave prototypes lying around

� Singleton: need > 1 User object...

53

Multi-User Protection (cont'd)

Singleton object creational

Intent

ensure a class only ever has one instance, and provide a global point of access
to it.

Applicability

� when there must be exactly one instance of a class, and it must be
accessible from a well-known access point

� when the sole instance should be extensible by subclassing, and clients
should be able to use an extended instance without modifying their code

Structure

Singleton

return uniqueInstance

static uniqueInstance
singletonData

static instance()
singletonOperation()
getSingletonData()

54

Multi-User Protection (cont'd)

Singleton (cont'd) object creational

Consequences

+ reduces namespace pollution

+ makes it easy to change your mind and allow more than one instance

+ allow extension by subclassing

� same drawbacks of a global if misused

� implementation may be less e�cient than a global

� concurrency pitfalls

Implementation

� static instance operation

� registering the singleton instance

Known Uses

Unidraw's Unidraw object

Smalltalk-80 ChangeSet, the set of changes to code

InterViews Session object

55

Multi-User Protection (cont'd)

From Singleton's Consequences:

[Singleton] permits a variable number of instances. The
pattern makes it easy to change your mind and allow more
than one instance of the Singleton class. Moreover, you can
use the same approach to control the number of instances
that the application uses. Only the [Instance] operation that
grants access to the Singleton instance needs to change.

We want one and only one User instance per user

56

Multi-User Protection (cont'd)

User modi�es Singleton's Instance operation a bit:

public static final User logIn (String loginName, String password) {

if (password incorrect for loginName) {

return null;

}

if (a User instance exists for loginName) {

return it;

} else {

return new User instance for loginName;

}

}

57

Multi-User Protection (cont'd)

Recap of logIn's properties

� globally accessible

� no more than one User object per login name

� can return null (or 0) if it fails

� cannot be changed by subclassing

58

Multi-User Protection (cont'd)

Using a User

Node operations only work for certain user(s)

De�ned by who \owns" the node and its protection mode

How do Node operations ascertain the user?

59

Multi-User Protection (cont'd)

Two approaches:

1. Pass User in each call

� e.g., void streamOut(OutputStream, User);

� \stateless" design

� can be a nuisance

2. De�ne an \implicit" User

� signatures unchanged from single-user versions

� \stateful" design

� requires global set/getUser interface

60

Multi-User Protection (cont'd)

In C++, default parameters allow both approaches:

const char* getName(const User* = 0);

const Protection& getProtection(const User* = 0);

void setName(const char*, const User* = 0);

void setProtection(const Protection&, const User* = 0);

void streamIn(istream&, const User* = 0);

void streamOut(ostream&, const User* = 0);

Node* getChild(int, const User* = 0);

void adopt(Node*, const User* = 0);

void orphan(Node*, const User* = 0);

In Java, use overloading (! double the operations)

61

Multi-User Protection (cont'd)

Typical impact on template methods:

public void streamOut (OutputStream out, User user) {

if (isReadableBy(user)) {

doStreamOut(out);

} else {

doWarning(unreadableWarning);

}

}

public boolean isReadableBy (User user) {

boolean isOwner = user.owns(this);

// true iff user's login name matches node's owner

return

isOwner && isUserReadable() ||

!isOwner && isOtherReadable();

}

62

Multi-User Protection (cont'd)

More questions:

� how to model groups of users?

� how to associate users and groups?

63

Multi-User Protection (cont'd)

Example grouping:

helen

vlis

erich

richardcope

"patterns" group

dru

matt

johnson

"family"
group

root

adm

"sys" group

daemon

64

Multi-User Protection (cont'd)

Groups as objects

Subclass from existing hierarchy, or new class (hierarchy)?

Assume User subclass

A Composite of users?

User

Group
children

65

Multi-User Protection (cont'd)

Why Composite is not applicable:

1. User-group not a recursive relationship

Not in Unix, at least

2. Not strictly hierarchical

A user can belong to more than one group

3. Questionable to treat users and groups uniformly

Login a group? Pass it around as authentication?

66

Multi-User Protection (cont'd)

Still need to associate groups and users

Need a two-way mapping for e�ciency

� # users � # groups
! �nd all group members without scanning all users

� checks for group membership should be fast, too

67

Multi-User Protection (cont'd)

One solution:

User Group

Drawbacks:

� references hard to change noninvasively

� all objects saddled with cost of a (pointer to a) collection

� tangle of references between User and Group objects

68

Multi-User Protection (cont'd)

Managing object interconnections ! Mediator

Before: After:

users groups users groups

Grouping

Grouping is probably a singleton

69

Multi-User Protection (cont'd)

Mediator object behavioral

Intent

de�ne an object that encapsulates how a set of objects interact to promote
loose coupling and to let you vary their interaction independently

Applicability

� there's cooperative behavior that can't be assigned to an individual object

� a set of objects communicate in well-de�ned but complex ways

� ordering of operations may change as system evolves

Structure

Mediator Colleague

ConcreteColleague2ConcreteColleague1ConcreteMediator

mediator

70

Multi-User Protection (cont'd)

Mediator (cont'd) object behavioral

Consequences

+ encapsulates communication

+ simpli�es protocols between objects

+ avoids pushing mediation responsibility into one or more colleagues

� Mediator can become complex and monolithic

Implementation

� using static members instead of a separate class

� Singleton mediators

Known Uses

Unidraw's Editor, CSolver

ET++ PrinterManager, DialogDirector

71

Multi-User Protection (cont'd)

Grouping interface

public abstract class Grouping {

public static Grouping getGrouping(); // returns singleton

public static void setGrouping(Grouping);

public static void setGrouping(Grouping, User);

public void register(User, Group);

public void register(User, Group, User);

public void unregister(User, Group);

public void unregister(User, Group, User);

public Group getGroup(String loginName, int index);

public String getUser(Group, int index);

}

72

Noti�cation

Problem: Clients sensitive to �le system changes

Example: Files created by one application appear in another:

save a
few Web
pages...

Don't want to hit \Refresh" to see the new �les!

Other examples: mail arrival, clipboards, embedded documents

73

Noti�cation (cont'd)

\Update," \noti�cation," \dependency" portend Observer pattern

A particularly rich one

Application issues:

� choosing participants: (Concrete)Subject, (Concrete)Observer

� the Subject-Observer mapping: how fancy?

74

Noti�cation (cont'd)

Observer object behavioral

Intent

de�ne a one-to-many dependency between objects so that when one object
changes state, all its dependents are noti�ed and updated automatically

Applicability

� when an abstraction has two aspects, one dependent on the other

� when a change to one object requires changing others, and you don't know
how many objects need to be changed

� when an object should notify other objects without making assumptions
about who these objects are

Structure

subject

observersSubject

ConcreteSubject

ConcreteObserver

Observer

subjectState

observerState
return subjectState

attach(Observer)
detach(Observer)
notify()

update()

update() observerState =
 subject.getState()

getState()

for all o in observers {
 o.update()
}

75

Noti�cation (cont'd)

Observer (cont'd) object behavioral

Consequences

+ modularity: subject and observers may vary independently

+ extensibility: can de�ne and add any number of observers

+ customizability: di�erent observers provide di�erent views of subject

� unexpected updates: observers don't know about each other

� update overhead: might need hints

Implementation

� subject-observer mapping

� dangling references

� avoiding observer-speci�c update protocols: the push and pull models

� registering modi�cations of interest explicitly

Known Uses

Smalltalk Model-View-Controller (MVC)

InterViews (Subjects and Views)

Andrew (Data Objects and Views)

76

Noti�cation (cont'd)

Mapping Observer participants to �le system classes

Directory noti�es �le browser of change in contents:

ObserverObserver

directory Subject

directory file

web browser file browser

new file

! any object might observe (= Observer) and

any object might be observed (= Subject)

77

Noti�cation (cont'd)

De�ne Subject and Observer as interfaces

Lets you give subject and/or observer characteristics to any class

interface Subject {

void attach(Observer);

void detach(Observer);

void notify();

}

interface Observer {

void update(Subject);

}

public abstract class Node implements Subject {

// ...

}

public class Browser implements Observer {

// ...

}

78

Noti�cation (cont'd)

Note Subject parameter to update

Observer may observe multiple subjects

public class Browser implements Observer {

// ...

public void update (Subject s) {

if (_openDirectories.contains(s)) {

Directory d = (Directory) s;

// update display(s) of d

}

}

private Vector _openDirectories;

}

79

Noti�cation (cont'd)

public abstract class Node implements Subject {

// ...

public void attach (Observer o) {

_observers.addElement(o);

}

public void detach (Observer o) {

_observers.removeElement(o);

}

public void notify () {

for (int i = 0; i < _observers.size(); ++i) {

Observer o = (Observer) _observers.elementAt(i);

o.update(this);

}

}

private Vector _observers;

}

All concrete subjects implement something similar to this...

80

Noti�cation (cont'd)

Consolidating Subject operations in a change manager

Can eliminate them from Subject entirely

Reuse by composition, not inheritance

public class ChangeManager {
public void register (Subject s, Observer o) {

Vector observers = (Vector) _registry.get(s);

if (observers == null) {
observers = new Vector();
_registry.put(s, observers);

}
observers.addElement(o);

}

public void unregister (Subject s, Observer o) {
Vector observers = (Vector) _registry.get(s);

if (observers != null) {
observers.removeElement(o);

}
}

// ...
}

81

Noti�cation (cont'd)

public class ChangeManager {
// ...

public void notify (Subject s) {
Enumeration e = _registry.elements();

while (e.hasMoreElements()) {
Vector observers = (Vector) e.nextElement();

for (int i = 0; i < observers.size(); ++i) {
Observer o = (Observer) observers.elementAt(i);
o.update(s);

}
}

}

private Hashtable _registry = new Hashtable();
}

� yet another Mediator

� may be a Singleton

82

Summary

Structure: Composite

Symbolic links: Proxy

Open-ended functionality: Visitor

Single-user protection: Template Method

Not Strategy, Decorator, or Proxy

Multi-user protection:

� Singleton: creating users, \implicit" user, Grouping

� Mediator: groups

{ Not Composite

Noti�cation: Observer

83

Summary (cont'd)

Proxy
TemplateMethod:ConcreteClass

Observer:ConcreteSubject

TemplateMethod:ConcreteClass

Composite:Leaf
Observer:ConcreteSubject

TemplateMethod:ConcreteClass

Observer:ConcreteSubject

Visitor

Visitor:ConcreteVisitor

Singleton

Observer:ChangeManager

Mediator:Colleague

Mediator:ConcreteColleagueMediator:ConcreteColleague

Observer:Subject
Mediator:Colleague

Observer

Mediator:ConcreteMediator

Composite:Component

TemplateMethod:AbstractClass
Visitor:Element

Proxy:Subject

Proxy:RealSubject Proxy:RealSubject

Mediator:ConcreteMediator
Singleton (variant)

Node

File DirectoryLink

Subject

NodeVisitor

CatVisitor

User Grouping Group

ChangeManager Observer

Composite:Leaf Composite

84

Experiences

Design patterns can't guarantee a good overall architecture

They're just micro-architectures

Creativity still required

� you might never implement a pattern the same way twice

� not all design decisions are covered by patterns

85

Experiences (cont'd)

Not always obvious which design pattern to apply

� the solutions of some patterns look similar:
\Just add a level of indirection."

! State, Strategy, Bridge, ...

� but the problem/intent they address is di�erent

Learning the patterns takes time

You have to experience the problem to appreciate the solution

86

Pattern Pitfalls

Overenthusiasm

� patterns have costs (indirection, complexity)

� therefore design to be as
exible as needed, not as
exible as
possible

\Complex systems that work evolved from simple systems that

worked."|Booch

\Start stupid and evolve."|Beck

Overly dense application

E.g., a class that participates in all 23 patterns!

Reducing the world to design patterns

87

(Design) Pattern References

The Timeless Way of Building, Alexander; Oxford, 1979;
ISBN 0-19-502402-8

A Pattern Language, Alexander; Oxford, 1977; ISBN 0-19-501-919-9

Design Patterns, Gamma, et al.; Addison-Wesley, 1995;
ISBN 0-201-63361-2; CD version ISBN 0-201-63498-8

Pattern-Oriented Software Architecture, Buschmann, et al.; Wiley,
1996; ISBN 0-471-95869-7

Analysis Patterns, Fowler; Addison-Wesley, 1996; ISBN 0-201-89542-0

Smalltalk Best Practice Patterns, Beck; Prentice Hall, 1997;
ISBN 0-13-476904-X

The Design Patterns Smalltalk Companion, Alpert, et al.;
Addison-Wesley, 1998; ISBN 0-201-18462-1

AntiPatterns, Brown, et al.; Wiley, 1998; ISBN 0-471-19713-0

88

More Books:

Pattern Languages of Program Design (Addison-Wesley)
Vol. 1, Coplien, et al., eds.; 1995; ISBN 0-201-60734-4
Vol. 2, Vlissides, et al., eds.; 1996; ISBN 0-201-89527-7
Vol. 3, Martin, et al., eds.; 1998; ISBN 0-201-31011-2
Vol. 4, Harrison, et al., eds.; 2000; ISBN 0-201-43304-4

Concurrent Programming in Java, Lea; Addison-Wesley, 1997;
ISBN 0-201-69581-2

Applying UML and Patterns, Larman; Prentice Hall, 1997;
ISBN 0-13-748880-7

Pattern Hatching: Design Patterns Applied, Vlissides;
Addison-Wesley, 1998; ISBN 0-201-43293-5

Future Books:

The Pattern Almanac, Rising; Addison-Wesley, 2000;
ISBN 0-201-61567-3

89

Early Papers:

\Object-Oriented Patterns," P. Coad; Comm. of the ACM, 9/92

\Documenting Frameworks using Patterns," R. Johnson;
OOPSLA '92

\Design Patterns: Abstraction and Reuse of Object-Oriented
Design," Gamma, Helm, Johnson, Vlissides, ECOOP '93.

Columns:

C++ Report, Dr. Dobbs Sourcebook, JOOP, ROAD

90

Conferences:

PLoP 2000: Pattern Languages of Programs
September 2000, Monticello, Illinois, USA

EuroPLoP 2000
July 2000, Kloster Irsee, Germany

ChiliPLoP 2000
March 2000, Wickenburg, Arizona, USA

KoalaPLoP 2000
May 2000, Melbourne, Australia

See http://hillside.net/patterns/conferences for up-to-the-minute information.

91

Mailing Lists:

patterns@cs.uiuc.edu: present and re�ne patterns

patterns-discussion@cs.uiuc.edu: general discussion on patterns

gang-of-4-patterns@cs.uiuc.edu: discussion on Design Patterns

siemens-patterns@cs.uiuc.edu: discussion on Pattern-Oriented
Software Architecture

ui-patterns@cs.uiuc.edu: discussion on user interface design patterns

business-patterns@cs.uiuc.edu: discussion on patterns for business
processes

ipc-patterns@cs.uiuc.edu: discussion on patterns for distributed
systems

See http://hillside.net/patterns/Lists.html for an up-to-date list.

92

URLs:

General
http://hillside.net/patterns

http://www.research.ibm.com/designpatterns

Conferences
http://hillside.net/patterns/conferences/

Books
http://hillside.net/patterns/books/

Mailing Lists
http://hillside.net/patterns/Lists.html

Portland Patterns Repository
http://c2.com/ppr/index.html

93

