Realtime Software Engineering with ICASE by Ammar & Lateef ) ' Chapxer-3

The last subsection in section 3 specifies Precedence and criticality of requirements listed in
the previous subsections. The order of precedence, criticality, or assigned weights indicating
the relative importance of the requirements in this specification are clearly documented.
Examples include identifying those requirements deemed critical to safety, to security, or to
privacy for purposes of singling them out for special treatment. If all requirements have equal
weight, this paragraph shall so state.

Section 4 entitled Qualification provisions defines a set of qualification methods and shall
specify for each requirement in Section 3 the method(s) to be used to ensure that the
requirement has been met. A table may be used to present this information, or each
requirement in Section 3 may be annotated with the method(s) to be used. Qualification
methods may include:

. Demonstration: The operation of the CSCI, or a part of the CSCI, that relies on
observable functional operation not requiring the use of instrumentation, special
test equipment, or subsequent analysis.

. Test: The operation of the CSCI, or a part of the CSCI, using instrumentation or
other special test equipment to collect data for later analysis.

. Analysis: The processing of accumulated data obtained from other qualification
methods. Examples are reduction, interpretation, or extrapolation of test results.

. Inspection: The visual examination of CSCI code, documentation, etc.

. Special qualification methods: Any special qualification methods for the CSCI,

such as special tools, techniques, procedures, facilities, and acceptance limits.
Finally section 5 documents the Requirements traceability information as follows:

. Traceability from each CSCI requirement in this specification to the system (or
subsystem, if applicable) requirements it addresses. (Alternatively, this traceability
may be provided by annotating each requirement in Section 3.)

Note: Each level of system refinement may result in requirements not directly traceable to
higher-level requirements. For example, a system architectural design that creates multiple
CSCls may result in requirements about how the CSCls will interface, even though these
interfaces are not covered in system requirements. Such requirements may be traced to a
general requirement such as “system implementation” or to the system design decisions
that resulted in their generation.

. Traceability from each system (or subsystem, if applicable) requirement allocated
to this CSCI to the CSCI requirements that address it. All system (subsystem)
requirements allocated to this CSCI shall be accounted for. Those that trace to
CSCI requirements contained in IRSs shall reference those IRSs.

Traceability analysis is a key activity in the verification and validation process described
briefly in the previous Chapter and will be described in more detail in Chapter 6 of this book.

Modified on: January 21, 1997 3:21 pm page: 3-123



Realtime Software Engineering with ICASE by Ammar & Lateef ) ' Chapxer-3

memory, input/output devices, auxiliary storage, communications/network equipment, and
other required equipment. Examples of software resources requirements include operating
systems, database management systems, communications/ network software, utility software,
input and equipment simulators, test software, and manufacturing software. Examples of
requirements for communication resources include geographic locations to be linked;
configuration and network topology; transmission techniques; data transfer rates; gateways;
required system use times; type and volume of data to be transmitted/received; time
boundaries for transmission/ reception/response; peak volumes of data; and diagnostic
features.

Section 3.11 entitled Software quality factors specifies the CSCI requirements, if any,
concerned with software quality factors identified in the contract or derived from a higher
level specification. Examples include quantitative requirements regarding CSCI functionality
(the ability to perform all required functions), reliability (the ability to perform with correct,
consistent results), maintainability (the ability to be easily corrected), availability (the ability
to be accessed and operated when needed), flexibility (the ability to be easily adapted to
changing requirements), portability (the ability to be easily modified for a new environment),
reusability (the ability to be used in multiple applications), testability (the ability to be easily
and thoroughly tested), usability (the ability to be easily learned and used), and other
attributes.

Design and implementation constraints are specified in section 3.12. This section specifies the
requirements, if any, that constrain the design and implementation of the CSCI. These
requirements may be specified by reference to appropriate commercial or military standards
and specifications. Examples include requirements concerning:

. Use of a particular CSCI architecture or requirements on the architecture, such as
required databases or other software units; use of standard, military, or existing
components; or use of Government/acquirer-furnished property (equipment,
information, or software)

. Use of particular design or implementation standards; use of particular data
standards; use of a particular programming language
. Flexibility and expendability that must be provided to support anticipated areas of

growth or changes in technology, threat, or mission

Sections 3.13, 3.14, and 3.15 specify the Personnel-related requirements, Training-related
requirements, and Logistics-related requirements, respectively. The first section shall specify
the CSCI requirements, if any, included to accommodate the number, skill levels, duty cycles,
training needs, or other information about the personnel who will use or support the CSCI.
Examples include requirements for number of simultaneous users and for built-in help or
training features. Also included shall be the human factors engineering requirements, if any,
imposed on the CSCI.

Training-related requirements specify the CSCI requirements, if any, pertaining to training.
Examples include training software to be included in the CSCI. Logistics-related requirements
specify the CSCI requirements, if any, concerned with logistics considerations. These
considerations may include: system maintenance, software support, system transportation
modes, supply-system requirements, impact on existing facilities, and impact on existing
equipment.

Modified on: January 21, 1997 3:21 pm page: 3-113



Realtime Software Engineering with ICASE by Ammar & Lateef ) ' Chapxer-3

» Synchronization, including connection establishment, maintenance,
termination
» Status, identification, and any other reporting features
g) Other required characteristics, such as physical compatibility of the interfacing entities
(dimensions, tolerances, loads, plug compatibility, etc.), voltages, etc.

The above section, section 3.3, is considered as one of the most important sections in this
document. This is because many of the errors found during testing are traced to
inappropriately specified interfaces. The following section, section 3.4 in the document,
describes the CSCI internal interface requirements. This section shall specify the
requirements, if any, imposed on interfaces internal to the CSCI. If all internal interfaces are
left to the design, this fact shall be so stated. If such requirements are to be specified, then the
topics in section 3.3 above can be used also for internal interfaces.

The information specification is continued in the following section entitled CSCI internal data
requirements. This section specifies the requirements, if any, imposed on data internal to the
CSCI. Included shall be requirements, if any, on databases and data files to be included in the
CSCI. If all decisions about internal data are left to the design, this fact shall be so stated. If
such requirements are to be imposed, paragraphs 3.3.x.e and 3.3.x.d above provide a list of
topics to be considered.

Adaptation requirements are specified in section 3.6. This section shall specify the
requirements, if any, concerning installation-dependent data to be provided by the CSCI (such
as site-dependent latitude and longitude or site-dependent state tax codes) and operational
parameters that the CSCl is required to use that may vary according to operational needs (such
as parameters indicating operation-dependent targeting constants or data recording).

Safety requirements are specified next. The CSCI requirements, if any, concerned with
preventing or minimizing unintended hazards to personnel, property, and the physical
environment must be thoroughly specified. Examples include safeguards the CSCI must
provide to prevent inadvertent actions (such as accidentally issuing an “auto pilot off”
command) and non-actions (such as failure to issue an intended “auto pilot off” command).
This section shall include the CSCI requirements, if any, regarding nuclear components of the
system, including, as applicable, prevention of inadvertent detonation and compliance with
nuclear safety rules.

Security and privacy requirements is a separate section specifying the CSCI requirements, if
any, concerned with maintaining security and privacy. These requirements shall include, as
applicable, the security/privacy environment in which the CSCI must operate, the type and
degree of security or privacy to be provided, the security/privacy risks the CSCI must
withstand, required safeguards to reduce those risks, the security/privacy policy that must be
met, the security/privacy accountability the CSCI must provide, and the criteria that must be
met for security/privacy certification/accreditation.

A CSCI environment requirements section specifies the requirements, if any, regarding the
environment in which the CSCI must operate. Examples include the computer hardware and
operating system on which the CSCI must run. (Additional requirements concerning computer
resources are given in the next paragraph.)

Hardware, software, and communications resources requirements are specified next in section
3.10. Examples of hardware resources requirements include characteristics of processors,

Modified on: January 21, 1997 3:21 pm page: 3-1(B



Realtime Software Engineering with ICASE by Ammar & Lateef ) ' Chapxer-3

of the interfacing entities (such as different expectations about the size, frequency, or other
characteristics of data elements):

a) Priority that the CSCI must assign the interface

b) Requirements on the type of interface (such as real-time data transfer, storage-and-
retrieval of data, etc.) to be implemented

c) Required characteristics of individual data elements that the CSCI must provide, store,
send, access, receive, etc., such as:

» Data type (alphanumeric, integer, etc.)

» Size and format (such as length and punctuation of a character string)

» Units of measurement (such as meters, dollars, nanoseconds)

* Range or enumeration of possible values (such as 0-99)

» Accuracy (how correct) and precision (number of significant digits)

* Priority, timing, frequency, volume, sequencing, and other constraints, such as
whether the data element may be updated and whether business rules apply.

e Security and privacy constraints

* Sources (setting/sending entities) and recipients (using/receiving entities)

d) Required characteristics of data element assemblies (records, messages, files, arrays,
displays, reports, etc.) that the CSCI must provide, store, send, access, receive, etc.,
such as:

» Data elements in the assembly and their structure (number, order, grouping)

* Medium (such as disk) and structure of data elements/assemblies on the
medium

* Visual and auditory characteristics of displays and other outputs (such as
colors, layouts, fonts, icons and other display elements, beeps, lights)

» Relationships among assemblies, such as sorting/access characteristics

» Periority, timing, frequency, volume, sequencing, and other constraints, such as
whether the assembly may be updated and whether business rules apply

e Security and privacy constraints

» Sources (setting/sending entities) and recipients (using/receiving entities)

e) Required characteristics of communication methods that the CSCI must use for the

interface, such as:
* Project-unique identifier(s)
» Communication links/bands/frequencies/media and their characteristics
* Message formatting
* Flow control (such as sequence numbering and buffer allocation)
» Data transfer rate, whether periodic/aperiodic, and interval between transfers
* Routing, addressing, and naming conventions
* Transmission services, including priority and grade
» Safety/security/privacy considerations, such as encryption, user authentication,
compartmentalization, and auditing

f) Required characteristics of protocols the CSCI must use for the interface, such as:

* Project-unique identifier(s)

* Priority/layer of the protocol

» Packeting, including fragmentation and reassembly, routing, and addressing
» Legality checks, error control, and recovery procedures

Modified on: January 21, 1997 3:21 pm page: 3-B



Realtime Software Engineering with ICASE by Ammar & Lateef ) ' Chapxer-3

After specifying the states and the modes of the CSCI, the functional requirements for each
state are specified. This comes under the heading CSCI capability requirements.

This section is divided into subsections to itemize the requirements associated with each
capability of the CSCI. The term “capability” is defined as a group of related requirements.
This is a generic term which may be replaced with “function”, “subject”, “object”, or other
term useful for presenting the requirements. The subsection designated as 3.2.x (CSCI
capability) identifies a required CSCI capability and itemizes the requirements associated with
it. If the capability can be more clearly specified by dividing it into constituent capabilities.
The constituent capabilities shall be specified in subsections. The requirements must specify
required behavior of the CSCI and shall include applicable parameters, such as response
times, throughput times, other timing constraints, sequencing, accuracy, capacities (how
much/how many), priorities, continuous operation requirements, and allowable deviations
based on operating conditions. The requirements shall include, as applicable, required
behavior under unexpected, unallowed, or “out of bounds” conditions, requirements for error
handling, and any provisions to be incorporated into the CSCI to provide continuity of
operations in the event of emergencies. The section provides a list of topics to be considered
when specifying requirements regarding inputs the CSCI must accept and must produce

outputs.

Sections 3.1 and 3.2, described above contain the graphical analysis diagrams using either SA
or OOA as introduced in the previous sections. This is needed in order to graphically represent
the overall CSCI functional partitioning, behavioral specification, information flow
representation and modeling. The CSCI external interface requirements is divided into
subsections to specify the requirements, if any, for the CSCI's external interfaces. This section
may reference one or more Interface Requirements Specifications (IRSs) document or other
documents containing these requirements.

The first subsection, Interface identification and diagrams, identifies the required external
interfaces of the CSCI (that is, relationships with other entities that involve sharing, providing
or exchanging data). The identification of each interface shall include a project-unique
identifier and shall designate the interfacing entities (systems, configuration items, users, etc.)
by name, number, version, and documentation references, as applicable. The identification
shall state which entities have fixed interface characteristics (and therefore impose interface
requirements on interfacing entities) and which are being developed or modified (thus having
interface requirements imposed on them). One or more interface diagrams must be provided
to depict the interfaces. These diagrams are in the form of context diagrams as mentioned in
the previous sections.

The second and subsequent subsections (beginning with 3.3.2) must identify a CSCI external
interface by project-unique identifier, briefly identify the interfacing entities, and must be
divided into subparagraphs as needed to state the requirements imposed on the CSCI to
achieve the interface. Interface characteristics of the other entities involved in the interface
shall be stated as assumptions or as “When [the entity not covered] does this, the CSCI
shall...,” not as requirements on the other entities. This paragraph may reference other
documents (such as data dictionaries, standards for communication protocols, and standards
for user interfaces) in place of stating the information here.

The requirements shall include the following, as applicable, presented in any order suited to
the requirements, and shall note any differences in these characteristics from the point of view

Modified on: January 21, 1997 3:21 pm page: 3-8



Realtime Software Engineering with ICASE by Ammar & Lateef

Chajasr-3

1. Scope.
1.1 Identification
1.2 System overview
1.3 Document overview
2. Referenced documents.
3. Requirements
3.1 Required states and modes
3.2 CSCI capability requirements
3.2.x (CSCI capability)
3.3 CSCI external interface requirements
3.3.1 Interface identification and diagrams
3.3.x (Project-unique identifier of interface)
3.4 CSCl internal interface requirements
3.5 CSCl internal data requirements
3.6 Adaptation requirements
3.7 Safety requirements
3.8 Security and privacy requirements
3.9 CSCI environment requirements
3.10 Computer resource requirements
3.10.1 Computer hardware requirements

3.10.2 Computer hardware resource utilization requirements

3.10.3 Computer software requirements

3.10.4 Computer communications requirements

3.11 Software quality factors

3.12 Design and implementation constraints

3.13 Personnel-related requirements

3.14 Training-related requirements

3.15 Logistics-related requirements

3.16 Precedence and criticality of requirements
4. Qualification provisions
5. Requirements traceability

Table 1: Outline of the Software Requirements Specification Documents

Modified on: January 21, 1997 3:21 pm

page: 3-73



Realtime Software Engineering with ICASE by Ammar & Lateef ) ' Chapxer-3

this section, in an appendix referenced from this section, or by annotation of the requirements
in the paragraphs or sections where they appear.

Modified on: January 21, 1997 3:21 pm page: 3-8



Realtime Software Engineering with ICASE by Ammar & Lateef ) ' Chapxer-3

The detailed discussion of OOA and examples of using TWK/OOA will be presented later in
this Chapter.

3.1.3 The SWRA Documents

The Software Requirements Specification (SRS) document specifies the requirements for a
Computer Software Configuration Item (CSCI) and the methods to be used to ensure that each
requirement has been met. Requirements pertaining to the CSCI's external interfaces may be
presented in the SRS or in one or more Interface Requirements Specifications (IRSs)
documents referenced from the SRS.

In the following paragraphs the major required sections in the SRS document according to the
498 standard will be briefly presented. This section contains excerpts from the Software
Requirements Specification Data Item Description (SRS-DID). The reader is referred to this
MIL-STD-498 standard document for a complete documentation specification.

The following Table 1 shows the required sections of the SRS. The first section consists of
three subsections as follows:

. The Identification subsection contains a full identification of the system and the
software to which this document applies, including, as applicable, identification
number(s), title(s), abbreviation(s), version (s), and release number(s);

. The System Overview contains a brief statement describing the purpose of the
system and the software to which this document applies. It also must describe the
general nature of the system and software; summarize the history of system
development, operation, and maintenance; identify the project sponsor, acquirer,
user, developer, and support agencies; identify current and planned operating sites;
and list other relevant documents

. The Document overview summarizes the purpose and contents of this document
and describes any security or privacy considerations associated with its use.

The Referenced documents section lists the number, title, revision, date, and source of all
documents referenced in this specification.

Section 3, the Requirements section, specifies the CSCI requirements identifying those
characteristics of the CSCI that are conditions for its acceptance. CSCI requirements are
software requirements generated to satisfy the system requirements allocated to this CSCI.
The section includes subsections specifying the states and modes (behavioral information) as
well as the capabilities (functional information) of the CSCI. The capabilities subsection is
divided into several subsections describing the functional partitioning, and the detailed
functional description. (Data/control flow diagrams, and state transition diagrams or
equivalent, are used in developing the specification of behavioral and functional
specification).

The Required states and modes subsection is nhecessary only when the CSCI is required to
operate in more than one state or mode. A state or a mode of operations will have
requirements distinct from other states or modes, this section should identify and define each
state and mode. Examples of states and modes include: idle, ready, active, post-use analysis,
training, degraded, emergency, backup, wartime, peacetime. The requirements for the system
behavior at the idle state for example must clearly associated with that state. In general, each
requirement or group of requirements in this specification must be correlated to the states and
modes in which they belong. The correlation may be indicated by a table or other method in

Modified on: January 21, 1997 3:21 pm page: 3-3



Realtime Software Engineering with ICASE by Ammar & Lateef ) ' Chapxer-3

Several examples are to be described later in this Chapter to illustrate the above specification
technique. Examples can be taken from the set of case studies provided in this text or from
[HATLEY&PIRBHAI 88].

3.1.2 Object-Oriented Analysis (OOA)

The OOA approach gives more attention to data specification than structured approach which
gives more emphasis to functional or procedural specification. The OOA approach is centered
around three general concepts: objects, classes, and inheritance. The object-oriented approach
has evolved from the concepts of computer simulation which is based on simulating the
activities (functions) performed on some entities (objects) of a system. Objects are created and
destroyed during the simulation. Objects are the basic run-time entities in an object oriented
system. Objects take up space in memory and have an associated address like a data structure.
For example, The arrangements of bits in an object's allocated memory space determine the
state of the object at any given moment. Associated with each object is a set of functions that
define the meaningful operations on that object. Thus, an object encapsulates both state and
behavior. Classes define the representation of attributes and behavior of objects. Ideally, a
class is an implementation of an Abstract Data Type (ADT). An ADT consists of the

following parts:

. A type name (e.g. pressures, temperatures, voltages etc.),

. An optional specification of the domain of values for the type (e.g, a 2-dimensional
array of floating point values, etc.)

. A specification of allowed operations (e.g., add, multiply, inverse, transpose, etc.)

defined on that type.

The implementation details of a class are private to the class. The public interface of such a
class is composed of two kinds of class methods. The first kind consists of functions that
return meaningful abstractions about the object instance's state. The other type of methods
involves transformation procedures used to move an instance from one valid state to another.
A C++ struct or class, or an Ada package can be used to implement ADTSs.

Inheritance is a relation between classes that allows for the definition and implementation of
one class to be based on that of other existing classes (for example the class “square matrix”
can be defined based on the class “matrix”). Inheritance is the most important concept that
helps us realize the goal of constructing software from reusable parts, or components rather
than hand coding every system from scratch. Inheritance not only supports reuse across
systems, but it also directly facilitates extensibility within a given system. Inheritance
minimizes the amount of work needed when adding additional features.

The logical model, which is based on teamwork/OOA (see also [SHLAER & MELLOR 92)),
consists of class diagrams, object communication diagrams, state transition diagrams (STDs),
and timing diagrams. The class diagram is built using an Entity Relationship Diagram defined
in the previous section. The class diagram shows the various classes and the relationship
between them. The object communication diagram shows the data flow between the classes of
objects in the system. Then for each class, an STD is defined showing the states of the class
and the function and operation which can be activated in each state. A Data Flow Diagram is
defined for each state in the STD and timing diagram is also defined for the activated
operations.

Modified on: January 21, 1997 3:21 pm page: 3-8



Realtime Software Engineering with ICASE by Ammar & Lateef ) ' Chapxer-3

3.1.1 Structured Analysis (SA)

In this section, the most widely used method for structured analysis of real-time systems is
described. This method was first proposed by Ward and Mellor [Ward & Mellor 85] and then
later enhanced by Hatley and Pirbhai [Hat&B 88]. It is supported by most CASE tools. The
method is an extension of the structured system analysis, data flow analysis, and transaction
analysis to real-time systems.

The Hatley and Pirbhai technique relies primarily on three types of graphs or models
described as follows:

. The process model represented by transformation graphs which are basically Data
Flow and Control Flow Diagrams (DFDs/CFDs). The model represents the
processing of information in terms of data and control signals in the proposed
system.

. State Transition Diagrams depict the sequence of states and the corresponding
control actions and, therefore, define the control specifications which represent the
real-time behavioral model of the system.

. Entity-Relationship Diagrams provide an information model for the data items and
control signals and the relationships among these data items.

A fully developed specification starts with a context diagram, the highest level DFD/CFD.
This graph places the software in a real-world context. It defines the whole CSCI as one
component and models the interfaces to external software or hardware components that
interact with the CSCI.

Other DFDs/CFDs specify the processing in the software at a lower level of detail where a
component at a higher level DFD/CFD is further specified by its own DFD/CFD at a lower
level. The various graphs fit together and form a hierarchy with the context diagram at the top.
Nodes in these graphs are either data transformation nodes or control transformation nodes.

Processes specifications (P-specs) are used to define data transformation primitive nodes
(those that do not have a lower level DFD/CFD to specify them). P-specs can be defined using
pre/post conditions, structured high-level languages, or pseudo-code.

Control transformation nodes are specified further by C-specs using decision tables, State
Transition Diagrams (STDs), or state-event matrices which show the control flow behind the
system control processes. They specify the details of the sequence of states at which the
activities (or processes) defined in the DFDs/CFDsare to take place. Decision Tables (DTs),
Process Activation Tables (PATs), and State/Event Matrices (SEMs) are also used as C-specs.

The information model defined in an Entity-Relation Diagram (ERD) serves as a library of
data records and describes the relationship between data elements used in the system. All the
information used in the Transformation Graphs, must correspond to data derived in the ERD.

The above graphs represent three views of the system, namely, the process view (represented
by DFDs/CFDs) specify the functional as well as the information flow representation, the
control view (represented by STDs, DTs, PATs, or SEMs) specify the behavioral
representation, and the data view (described by the ERDs) Specify the information
relationship and content representation. When these graphs are complete and fully developed,
they provide a complete logical specification for the CSCI.

Modified on: January 21, 1997 3:21 pm page: 3-3



Realtime Software Engineering with ICASE by Ammar & Lateef ) ' Chapxer-3

3.1 Introduction to Requirements Analysis

Recall the description in the ESA standard for the Software Requirements Analysis (SWRA)
phase presented in section 2.3.1. In the SWRA phase a logical model of the system is produced
and used to analyze the completeness, consistency, and testability of the requirements. Building
prototypes and dynamic simulation models in this phase could be necessary to analyze the
dynamic behavior of complex real-time systems and verify and clarify their software
requirements.Tool support for these tasks will be defferred to Chapter 6. A Software Requirement
Document (SRD) is produced at the end of this phase to capture the software requirements
specification. The SRD is formally reviewed during the Software Requirements Review (SRR) by
the users, software engineers, hardware engineers, and managers concerned. The project
management plan is also updated and a detailed plan for the design phase must be produced.

The logical model mentioned above is an implementation-independent model of the software. It
should clearly reflect what is needed by the user and its components should be traced to
requirements in the user requirements document. The user requirements document is an input to
this phase and is the main source of information in building the logical model. This model is used
to specify the technical software requirements. By examining the logical model a precise and
detailed set of software requirements are obtained and classified as functional requirements,
performance requirements, interface requirements, resource requirements, verification
requirements, acceptance testing requirements, security requirements, portability requirements,
reliability, quality requirements, maintainability, and safety requirements.

The specification of SWRA phase in the DOD standard MIL-STD-498 also focuses on analyzing
the requirements and developing a logical model for each computer software configuration item
(CSCI). The inputs to this phase is the system System/Subsystem Design Description (SSDD).
This document was prepared as part of the activities outlined section 2.3.2 for the System Design
(SYSD) phase. The SSDD defines and records the overall system architecture in terms of
Hardware Configuration Iltems (HWCIs), Computer Software Configuration Items (CSCIs). It

also specifies the overall appearance and behavior in response to system requirements (specified
in the System requirements analysis (SYSRA) phase). Moreover, the allocation of system
requirements to HWClIs, CSCls, and manual operations is also recorded. The design information
pertaining to interfaces may be found in the SSDD or in the Interface Design Descriptions (IDDs)
document, and design information pertaining to databases may have also been included in the
SSDD or in a Database Design Descriptions (DBDDs) document.

The documents above give the needed overall system view as well as the requirements pertaining
to the specific CSCls. The DOD standard mandates that a detailed and precise description of the
functional, timing, and data requirements by means of a logical model for each CSCI must be
developed and documented in this phase. A Software Requirements Specification document must
be produced and reviewed.

Two major approaches for developing the logical model will be discussed next. These are the
structured analysis approach (also called functional or process oriented approach), and the object
oriented analysis approach. The two approaches differ in the way they model the system
requirements in order to obtain precise specification. Following the discussion on the analysis
techniques presented in the following subsections, a detailed description of the software
requirements specifications document described in the DOD standard is presented.

Modified on: January 21, 1997 3:21 pm page: 3-8



Realtime Software Engineering with ICASE by Ammar & Lateef ) ' Chapxer-3

Chapter IlI: cd groSOFTWARE REQUIREMENTS ANALYSIS

3.1 Introduction to Requirements Analysis
3.2 Structured Analysis for Real-Time Software Using ICASE
3.2.1 Introduction to Structured Analysis
3.2.2 The ICASE SA-RT tool.
3.2.3 Examples
3.2.3.1 Traffic Light (Add its requirements to Chapter 1 before AMS etc.)
3.2.3.2 ATM
3.2.3.3 AMS
3.3 Object-Oriented Analysis Using ICASE
3.3.1 Introduction to Object-Oriented Analysis and Data Modeling
3.3.2 The Current and Evolving Notations of OOA
3.3.3 The ICASE OOA tool support.
3.3.4 Examples

kkkkkkkkkkkkkkkkkkkkkhkkkkhkkkhkkkkkkkkhkkhkkhkkkhkkkhkhkkkkkkkkkkkhkkkhkkkhkkkkkkkkkkx

. 3.1 Introduction to Requirements Analysis
. 3.2 Structured Analysis for Real-Time Software Using ICASE
. 3.3 Object-Oriented Analysis (OOA) Using ICASE

. 3.4 Analysis using Teamwork

. 3.5 ICASE Environments: IDE’s Software through Pictures
. 3.6 Examples of SART

. 3.7 References

Chapter 3 describes the methodologies for real-time software requirements analysis and
specification. The Chapter starts by describing the overall conceptual modeling task, and the
resulting software requirements specification document. Section 3.2 describes the structured
analysis technique and the tool support given in Teamwork/SA-RT using the example
requirements presented in section 1.3 of Chapter 1. The object-oriented Analysis (OOA)
Methodology and notations are introduced in section 3.3.1. Several different OOA notations are
discussed and contrasted with the structured analysis approach. The evolving notations for OOA
such CASE/RT and the fusion method are compared with the current notation in section 3.3.2.
Developing analysis diagrams using Teamwork/IM and ObjectTeam/OOA are then described
using examples in sections 3.3.3 and 3.3.4.

Modified on: January 21, 1997 3:21 pm page: 3-13



