Realtime Software Engineering with ICASE by Ammar & Lateef Chapxer-3
alert_messages: data_in

BODY:

If the alert_queue is empty, the Add Smoke Detector Alert

to Queue function shall retrieve the associated alert_message,

based on detection_type, from the alert_messages store and

send it to the display. Otherwise, it will add the sensor_id

to the alert_queue for subsequent display.

If the detection_type = “SMOKE?”, this function shall set the
detector_lamp_command to “RED?". If the detection_type = “NO SMOKE"
it shall set the detector_lamp_command to “GREEN”. This function

shall send the detector_lamp_command to the lamp corresponding to
the sensor_id.

NAME:

4.4

TITLE:

Add Fuel Alert to Queue

INPUT/OUTPUT:

alert_queue: data_out

alert_messages: data_in

fuel_lamp_command: control_out

BODY:

If the alert_queue is empty, the Add Fuel Alert to

Queue function shall retrieve the associated alert_message

from the alert_messages store and send it to the display.

Otherwise, it will add the sensor_id to the alert_queue for

subsequent display. It shall also set fuel_lamp_command to

“RED” and send it to the fuel lamp.

Modified on: January 21, 1997 3:21 pm page: 3-88

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

Figure 3.27 P-specs for primitive functions of Generate Alarm

NAME:
4.1

TITLE:
Add Out-of-Range Alert to Queue

INPUT/OUTPUT:

sensor_id: data_in

alert_queue: data_out
alert_messages: data_in
display_data.alert_message: data_out
sensor_lamp_command: control_out

BODY:

If the alert_queue is empty, the Add Out-of-Range Alert

to Queue function shall retrieve the associated alert_message
from the alert_messages store and send it to the display.
Otherwise, it will add the sensor_id to the alert_queue for
subsequent display. It shall also set sensor_lamp_command to
“RED” and send it to the lamp corresponding to the sensor_id.

NAME:
4.2

TITLE:
Reset Lamp

INPUT/OUTPUT:
sensor_id: data_in
detector_lamp_command: control_out

fuel_lamp_command: control_out
sensor_lamp_command: control_out

BODY:

The Reset Alarm function shall set either the sensor_lamp_command,
the detector_lamp_command, or the fuel_lamp_command to
“GREEN?” based on the sensor_type and send it to the lamp
corresponding to the sensor_id.

Note that this operation is independent of when the pilot
acknowledges the corresponding alert message that is on display.

NAME:
4.3

TITLE:
Add Smoke Detector Alert to Queue

INPUT/OUTPUT:

detection_type: data_in

alert_queue: data_out

sensor_id: data_in
detector_lamp_command: control_out

Modified on: January 21, 1997 3:21 pm page: 3-873

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:obed

8-

4-s12;5
Generate Alarm STD

sensor_status = “IN”

sensor_status = “IN"/

alert_action = “RESET”

sensor_status = “pUT”

outl

sensor_status F “OUT”

out2

sensor_status = “OyT"/
alert_action = “"GENERATE”"

sensor_status = “OUT”

in2

6

sensor_status = “IN”

sensor_status = “OUT”

inl

in_range
1
sensor_status = “IN”
sensor_status = “IN”
out_of _
range

Figure 3.29 STD 4 Generate Alarm

sensor_status = “OUT”

4

sensor_status = “IN”

dlS wiely ayelaus TS-v 62°€ inbid

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

c-lgmleyD

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:obed

&8-¢

4-s2:8

Generate Alarm PAT

Notes: 1. smoke_detection is independent of out-of-range condition.

2. fuel capacity can be either out-of-range or low.

alert smoke
action detection fuel_status 1 2 3 4
*Add Out-of- . *Add Detector *Add Fuel
Range Alert Reset Alert to Alert to
to Queue* Lamp Queue* Queue*
“GENERATE” 1 0
“RESET” 0 1 0 0
“TRUE” 0 1
“FALSE” 1 0
“LOW” 0 1

1Vd Wiepy ajesauds gs- 8z'¢ aInbi4

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

¢-igrleyD

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

&8-¢ :obed

413 A smoke_
Generate Alarm sensor_status detection
alert
action
fuel
status
s1) Generate Alarm STD
s2] Generate Alarm PAT
sensor_id display_data.alert_message

Add
Out-of-Range
Alert to Queue

command

alert_messages

alert_queue

Figure 3.26 Generate Alarm

detection_
type

sensor_id

sensor_lamp_

fuel_lamp_
command

Add Fuel Alert
to Queue

Add Smoke
Detector Alert
to Queue

alert_messages

sensor_id

fuel_lamp_command

ensor_lamp_command

detector_lamp_command

detector_lamp_
ommand

Ja91eT % rewwy Agq ISl yum BuussuiBug aremyos swinesy

¢-igrleyD

Realtime Software Engineering with ICASE by Ammar & Lateef

Chajasr-3

fuel_data_received: control_out
sensor_reading: data_out
time_of day: data_in

BODY:
Upon receipt of the sensor_data, this function shall update

the sensor_reading store with the sensor_data and the

time_of day received, and set sensor_data_received to “TRUE”".

If the sensor_type = “F”, this function shall also set
fuel _data received to “TRUE".

Modified on: January 21, 1997 3:21 pm

page: 3-83

Realtime Software Engineering with ICASE by Ammar & Lateef

Chajasr-3

range_constants: data_in
time_of day: data_in

BODY:
For the sensor being polled, the Record Time-out function
shall update the sensor_reading store as follows:

1. Set time_received to time_of _day.

2. Based on the range_constants, set the sensor_value
to an out-of-range value. (Note: a Time-out condition
shall be treated as an out-of-range condition.)

NAME:
1.2

TITLE:
Determine Range

INPUT/OUTPUT:
sensor_reading: data_in
range_constants: data_in
sensor_status: control_out
sensor_id: data_out

BODY:

The Determine Range function shall compare each
sensor's sensor_value with the corresponding
range_constants for the sensor. If the value is

out of range, it shall set sensor_status to “OUT”,
otherwise, it shall set sensor_status to “IN”.

It will also output the sensor_id along with the
status.

NAME:
1.3

TITLE:
Determine Fuel Capacity

INPUT/OUTPUT:
sensor_reading: data_in
fuel_status: control_out

BODY:

The Determine Fuel Capacity function shall

compare the sensor_value for the fuel tank

entry of the sensor_reading store with a TBD maximum
fuel amount. If the value is less than 10% of

maximum, this function shall set fuel_status

to “LOW”".

NAME:
14

TITLE:
Receive Sensor Data

INPUT/OUTPUT:
sensor_data: data_in
sensor_data_received: control_out

Modified on: January 21, 1997 3:21 pm

page: 3-823

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

€18-¢ :abed

—Josuas

:Buipeal
:1NdLNO/LNdNI

1N0-sWli] pJodayYy

1IN0 elep

ATLIL

TT
‘AANVN

1-s2;2

Monitor Sensor SEM

States/ sensor_data_ Ti t one_second__

Events received Ime-ou interrupt
reading_request;

dle *don't care* /idle set_timer/

Polling Sensor

Polling record_timeout;

/idle sensor_data_ *don't care*
Sensor received/Idle

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

¢-igrleyD

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:obed

&8-¢

1-s1;4

Monitor Sensor PAT

sensor_data_ fuel_data_ record_
received received Time-out
“TRUE”
“TRUE”
“TRUE”

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

¢-igrleyD

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:obed

BHL-E

Figure 3.24 DFD 1 Monitor Sensor

1,27 sensor_data_
Monitor Sensor received
set
Time-out ————————>> timer
reading
one_second_ — 3 request
interrupt record
Time-out
sensor_data_
received s2] Monitor Sensor SEM
sensor_data_
received
sens i fuel_data
Receive received i
Sensor Data s1] Monitor Sensor PAT

sensor_data_
eceived

sensor_

reading Determine fuel
Fuel Capacity status
time_of_day
read-only
data store
sensor_status
Determine
Record Range >sensor_id
Time-out

2

range_
constants

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

¢-igrleyD

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:obed

8L-€

Figure 3.23 DFD 0 Monitor Aircraft

0:34,)
Monitor Aircraft
Time-o

one_second_
intefrupt

sensor_data

fuel_status

smoke_
detection

detection_
type

sensor_id

display_data.
alert_message

lamp_command

readin

request

Monitor Sensor

sensor_id

G
Al

A

set_timer detection_
type
recordin
—>ata 9-
. Receive Smoke
sensor_ld Detection
Signal
time_of _
day
—_— dial_
read-only store data_msg
Generate
sensor i i
reading Dial Reading
sensor_data,
sensor_ received
status pilot_reques
smoke_%
detection
. . Process Pilot
sIj Monitor Aircraft PAT Request
display_data.
alert_message
smoke_
detection

—

enerate
larm

display_data.

sensor_id

ilot_requested
gata‘ a -

alert_queue

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

¢-igrleyD

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

back to state Idle occurs with a sensor_data received event or a Time-out event. The state
machine is specified for monitoring only one sensor. Since there are several sensors in this
application, each sensor should have its own instance of the controller S2. This is actually
why object-oriented analysis was proposed to specify a class of objects where several
instances of the class can coexist. Figure 3.25 (c) shows the P-specs for the primitive
processes 1.1, 1.2, 1.3, and 1.4, respectively.

The Generate Alarm function of DFD 0 is specified further using DFD 4 as shown in

Figure 3.26. The read only alert_messages store contains typical alert messages to be
displayed to the pilot when an out of range sensor reading (from the temperature or
pressure sensors) is detected, or a fuel alert is to be generated, or a smoke detector alert is
signaled. The alert_queue store contained queued alter messages to be displayed in
sequence to the pilot by the process_pilot_request function in DFD 0. The same
alert_queue store is also shown in DFD 0 in Figure 3.23.

The P-specs for the four functions shown in Figure 3.26 are shown in Figure 3.27. Figures
3.28 and Figure 3.29 show the C-specs for controllers S2 and S1 respectively. The PAT
shown in Figure 3.28 activates or deactivates the function in DFD 4 depending on the
values for the signals alert_action, smoke detection, and fuel_status. The alert_action
signal, produced by controller S2, is asserted to “GENERATE” in the event of receiving
three consecutive out of range sensor reading (from the pressure or temperature sensors).
The signal is asserted to “RESET” when three consecutive sensor readings are within the
range of sensor readings as shown in Figure 3.29.

Modified on: January 21, 1997 3:21 pm page: 3-773

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

. upper_limit (data flow, pel) =
* The upper limit in an allowable range

for a sensor. *.

Figure 3.23 shows the first level decomposition of AMS presented in DFD 0. Six

functions are specified. The first function deals with the process of monitoring the sensors.
The sensors pooling sequence, timer setting, the one second interrupt input, and the
reading and storing sensor data are all activities performed by the Monitor sensor function.
The second function deals with inputting and processing pilot requests. It also sends pilot
requested data to the CRT display. This structure is typical in many real-time systems
where synchronous or periodical events (such as sensor reading) are handled by one
function, and asynchronous events such as pilot requests are handled by a separate
function. This facilitates the detailed specification of each of these functions. The third
function is a simple function producing a recording_data output from the sensor_reading
store. The fourth function, Generate Alarm, deals with the processed sensor information
from function Monitor Sensors and produces warning and alarm signals and data to the
CRT display, to the lamps, and to an alert_queue store. The fifth function is a simple
function producing output data for the dials. The last function is dedicated to reading and
storing smoke detection information. It is activated by the controller S1 when a smoke
detection signal is asserted. The controller also activates a subset of functions when the
sensor_data_received signal is asserted, and yet another subset of processes must be active
all the time and hence they are not controlled by S1. The C-spec sheet specifying the PAT
for S1 is left as an exercise for the reader.

Figure 3.24 Shows the lower level DFD 1 of the Monitor Sensor function. It is clear that
the large number of inputs and outputs of this function would make it complex enough to
necessitate the development of a lower level DFD. The same sensor reading and
time_of day stores in DFD 0 is shown again in this DFD. The input function Receive
Sensor Data must be active all the time to read and store the input data. It also produces
output control signals indicating that data has been received. These signals are
sensor_data_received and fuel_data_received. There is some ambiguity here in the names
of these two signals. This ambiguity will be come clear when we discuss the C-specs for
controllers S1 and S2. The Record Time-out function is activated when the
record_timeout signal is asserted by the controller S2. It records in the sensor_reading
store a time out event tagged with the current time for the sensor being polled. Function
Determine Fuel Capacity is activated by S1 only when the fuel_data_received signal is
asserted. Similarly, function Determine range is activated only when the
sensor_data_received signal is asserted.

The C-spec sheets for controllers S1 and S2 of DFD1 are shown in Figure 3.25 (a), and
Figure 3.25 (b), respectively. The state machine specified by the SEM in Figure 3.25 (b)
consists of two states, Idle and Polling Sensor, for the Monitor Sensor process. The
one_second_interrupt event triggers a reading_request and a set_timer signals to be
asserted and results to a transition from the Idle state to Polling Sensor state. The transition

Modified on: January 21, 1997 3:21 pm page: 3-763

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

temperature_data (data flow, pel) =
* Temperature returned from the engine temperature
sensor. *.
. temperature_data_buffer (store, pel) =
* Temperature returned from the engine temperature
sensor which has been placed in the buffer. *.
. temperature_data_received (control flow, pel) =
["TRUE" | "FALSE"].
* Indicates whether or not a response was received
from the polling of the temperature sensor. *
. test smoke_detector (data flow, del) =
["TRUE" | "FALSE"].
* Signal indicating that the pilot wants to test
the smoke detector warning system. Note that this
does not test the smoke detectors themselves, but
just the systems response to smoke detector signals. *
. time_of day (store, pel) =
* This is a read-only store indicating time of day. *.
. time_received (data flow, pel) =
* This is the time a sensor value was received. *.
. timeout (control flow, del) =

["TRUE" | "FALSE"].

Modified on: January 21, 1997 3:21 pm page: 3-753

Realtime Software Engineering with ICASE by Ammar & Lateef

Chajasr-3

the status is set to out of range because this condition
is treated the same as if the sensor is out of range. *
sensor_type (data flow, pel) =

['S"|"F" | "P" | "T"].

* A unigue letter identifying the type of sensor. *
sensor_value (data flow, pel) =

* Value of the reading from a sensor. *.

set_timer (control flow, del) =

["TRUE" | "FALSE"].

smoke_detection (control flow, del) =

["TRUE" | "FALSE"].

* If true then smoke has been detected. If false
then smoke is no longer detected. *
smoke_detector_status (store, pel) =

* Status of smoke detector. *.

smoke_message (data flow, pel) =

"WARNING I SMOKE DETECTED."

state (data flow, pel) =

["IN_RANGE" | "OUT1" | "OUT2" | "OUT_OF_RANGE" | "IN1" | "IN2"].
* State in which a particular sensor exists. *
temp_message (data flow, pel) =

"WARNING !l ENGINE TEMPERATURE OUT OF RANGE.".

Modified on: January 21, 1997 3:21 pm

page:

3-78

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

. sensor_data_received (control flow, del) =
['TRUE" | "FALSE"].
. sensor_id (data flow) =
sensor_type + sensor_number.
. sensor_lamp_command (control flow, del) =
['RED" | "GREEN"].
. sensor_number (data flow, pel) =
* A unigue number assigned to a sensor. *.
. sensor_reading (store) =
@sensor_id + sensor_value + @time_received.
* It is assumed that there is at least one temperature, one
pressure, one fuel sensor, and one smoke detector onboard. *
. sensor_state (store) =

3{@sensor_id + state}3

* A state is maintained to determine how many out

of range readings have occurred for the fuel tank,

the pressure sensor, and the temperature sensor. *
. sensor_status (control flow, del) =

["IN" | "OUT"].

* Indicates that a particular sensor is either

in range or out of range. If a sensor timed out,

Modified on: January 21, 1997 3:21 pm page: 3-73

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

* Status generated from reading sensor data from
the device itself. *
. reading_request (control flow, del) =
["TEMP" | "PRESS" | "FUEL"].
* This is the signal generated to poll the different
sensors *
. record_timeout (control flow, del) =
["TRUE" | "FALSE"].
. recording_buffer (store) =
{recording_data}.
* Formatted data for recording on magnetic medium. *
. recording_data (data flow, pel) =
* This is the sensor data, formatted for the magnetic
medium that is required to be recorded. *.
. request_id (data/control flow, pel) =
* Unique identifier for a pilot request. *.
. sensor_data (data flow) =
sensor_id + sensor_value.
* This is the data coming in from the sensor itself. *
. sensor_data_buffer (store) =
{sensor_data}
* This is the data coming in from the sensor itself

which is stored in a buffer. *

Modified on: January 21, 1997 3:21 pm page: 3-723

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

. pilot_request_buffer (store) =
{pilot_request}.
* Commands from the pilot. See pilot_request. *
. pilot_requested_data (data flow, pel) =
* This information was not specified in the problem
statement and therefore is TBD *.
. press_message (data flow, pel) =
"WARNING ' ENGINE PRESSURE OUT OF RANGE.".
. pressure_data (data flow, pel) =
* Pressure returned from the engine pressure
sensor. *.
. pressure_data_buffer (store, pel) =
* Pressure returned from the engine pressure
sensor. *.
. pressure_data_received (control flow, pel) =
["TRUE" | "FALSE"].
* Indicates whether or not a response was received
from the polling of the pressure sensor. *
. range_constants (store) =
2{@sensor_id + lower_limit + upper_limit}2.
* Contains the upper and lower limits for the engine
pressure sensor and the engine temperature sensor. *
. read_status (control flow, pel) =

['OK" | "BAD"].

Modified on: January 21, 1997 3:21 pm page: 3-713

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

fuel_message (data flow, pel) =

"WARNING !II' FUEL CAPACITY BELOW 10 %".

. fuel_status (control flow, del) =
['LOW" | "OK"].
. lamp_buffer (store) =

{@sensor_id + lamp_msg}.

* Command to turn lamp to RED or GREEN. *
. lamp_command (control flow) =

[fuel_lamp_command | sensor_lamp_command | detector_lamp_command].
. lamp_msg (data flow, pel) =

* Formatted message to turn lamp RED or GREEN. *.
. lower_limit (data flow, pel) =

* The lower limit in an allowable range

for a sensor. *.
. one_second_interrupt (control flow, del) =

* Interrupt generated by the clock

every one second. This interrupt shall

cause a polling request to all sensors. *.
. pilot_data_queue (store, pel) =

* This is the pilot-requested data that is

gueued for display. Requirements for the

specific types of data are TBD. *.
. pilot_request (data flow) =

[acknowledge_alert | test_smoke_detector | calculate_data].

Modified on: January 21, 1997 3:21 pm page: 3-7(B

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

dial_data_msg (data flow, pel) =
* This is the converted sensor reading that gets sent
to the dial. *.
. display_buffer (store) =
{display_msg}.
* Contains formatted messages queued for
display. *
. display_data (data flow) =
alert_message + pilot_requested_data.
. display_msg (data flow, pel) =
* The formatted text for display of alerts to
the pilot. *.
. fuel_data (data flow, pel) =
* Fuel amount remaining returned from the fuel tank. *.
. fuel_data_buffer (store) =
fuel _data.
* Contains the fuel_data for the fuel tank. *
. fuel_data_received (control flow, del) =
["'TRUE" | "FALSE"].
* Indicates whether or not a response was received
from the polling of the fuel tank. *
. fuel_lamp_command (control flow, del) =

['RED" | "GREEN'].

Modified on: January 21, 1997 3:21 pm page: 3-6B

Realtime Software Engineering with ICASE by Ammar & Lateef

Chajasr-3

* This control flow indicates that all alerts have
been acknowledged so that pilot requested data may
be displayed. *
calculate_data (data flow, del) =
['READING" | "PRESS_CHANGE" | "FUEL_CONSUMP"].
* Note: The system level requirements did not specify
the types of data to be CALCULATED from the
sensor data. It provided the two examples 1) rate of
change in pressure and 2) rate of fuel consumption.
It gave one specific pilot request of displaying the
latest recorded sensor data. Therefore, the final
form of this definition is TBD. *
detection_type (data flow, pel) =
['SMOKE" | "NO SMOKE"].
* This is a data flow from the smoke detector

that indicates whether smoke has been detected

or whether smoke is no longer detected. *
detector_lamp_command (control flow, del) =
['RED" | "GREEN"].
dial_buffer (store) =
{dial_data_msg}.
* Contains formatted dial readings queued for

display. *

Modified on: January 21, 1997 3:21 pm

page: 3-68

Realtime Software Engineering with ICASE by Ammar & Lateef

Chajasr-3

Data Dictionary Entries
The DDEs for the AMS are listed below:

. DDEs:

acknowledge_alert (data flow) =

sensor_id.

alert_acknowledged (control flow, del) =

["TRUE" | "FALSE"].

alert_action (control flow, del) =

['GENERATE" | "RESET"].

alert_message (data flow) =

[press_message | temp_message | fuel_message | smoke message].
alert_messages (store) =

@sensor_id + display_msg.

* A read-only store containing the text for

the alert messages to be displayed. *

alert_queue (store) =

{@sensor_id}.

* This data store indicates which sensor alerts are
queued for display. *

alert_queue_status (control flow, pel) =
["'OK" | "EMPTY"].

all_alerts_acknowledged (control flow, del) =

["TRUE" | "FALSE"].

Modified on: January 21, 1997 3:21 pm

page:

3-63

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:abed

D9-€

Context-Diagram;13
Aircraft Monitoring System

polled

polled

Engine_pressure_
sensor

Engine_temperature_
sensor

sensor_ g Clock
Temperature_dial reading sensor_ reading_ data _Or:e_segon |
request. | da@ request Interrup
Recorder
recording_data
Pressure_dial dial_data_msg
Monitor pilot Keyboard
Aircraft request
dial_data_msg
Fuel_dial display_data CRT
lamp_command
sensor. i "
Z?tgléﬁan id T g?scnon_ Indicator_lamps
reading_
zgtnasor_ request
Smoke_detector
Fuel_tank Timer
polled

Figure 3.22 DFD Context Diagram Aircraft Monitoring System

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

¢-igrleyD

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

3.2.1.3 Aircraft Monitoring System

The structured analysis example presented in this section is based on the requirements for
the AMS system outlined in Chapter 1. The following list summarizes the set of diagrams
and P-specs discussed in this section

. DFD Context-Diagram Aircraft Monitoring System (8, 9, 10, 11, 12, 13)

. DFD O Monitor Aircraft (19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34)

. PAT 0-sl1 Monitor Aircraft PAT (1, 2, 3)

. DFD 1 Monitor Sensor

. PAT 1-s1 Monitor Sensor PAT (1, 2, 3, 4)

. SEM 1-s2 Monitor Sensor SEM (1, 2)

. PS 1.1 Record Time-out (1, 2)

. PS 1.2 Determine Range (1, 2, 3, 4)

. PS 1.3 Determine Fuel Capacity (1, 2, 3)

. PS 1.4 Receive Sensor Data (1, 2, 3, 4, 5)

. DFD 4 Generate Alarm (1, 2, 3,4,5,6, 7, 8, 9, 10, 11, 12, 13)

. SEM 4-s1 Generate Alarm STD (1)

. PAT 4-s2 Generate Alarm PAT (1, 2, 3,4, 5, 6, 7, 8)

. STD 4-s12 Generate Alarm STD (1, 2, 3, 4, 5)

. PS 4.1 Add Out-of-Range Alert to Queue (1)

. PS 4.2 Reset Lamp (1, 2, 3, 4, 5)

. PS 4.3 Add Smoke Detector Alert to Queue (1, 2, 3)

. PS 4.4 Add Fuel Alert to Queue (1)

Figure 3.22 shows the context diagram. According to the requirements in section 1.3.1, the
Engin_pressure_sensor, Engin_temperature_sensor, and the Fuel_tank sensor are polled
by the system at regular one second intervals (requirements numbers 3 and 14). The
one_second_interrupt input from the clock is used by the system to start the polling
sequence. Each sensor must respond with the sensor_data within a time-out interval
maintained by the Timer which is set by the system for each polling activity. Sensor_data
are read, and are transformed into dial_data_msg sent to the dials. Indicator_lamps are
also set by the system to indicate warning conditions. The smoke_detector system sends a
smoke detection signal to AMS followed by detection_type and sensor_id information.
Pilot_request information is read by the system from a keyboard. This information consist
of requests for measures calculated from the The system outputs to the CRT display_data
containing warning messages or other information requested by the pilot such as rate of
change of temperature, pressure, or fuel consumption. Finally, recording_data information
consisting of all smoke or no smoke interrupts and readings tagged with time are sent to a
data recoder (requirements number 25 and 26).

Modified on: January 21, 1997 3:21 pm page: 3-653

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

&9-¢ :abed

31 transaction_

Collect Statistics history

Collect
Transaction
History

transaction_
result

Figure 3.20 Collect Statistics DFD

Calculate
Transaction
Statistics

statistical_
analysis

Print
Statistical
Report

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

c-lgmleyD

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:obed

&9-¢

Control Transactions PAT

transaction_type

“Execute Inquiry”

“Execute Transfer”

Execute Deposit”

“Execute Withdrawal”

‘“WITHDRAWAL”

“‘INQUIRY”

‘DEPOSIT”

“TRANSFER”

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

¢-igrleyD

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:abed

&9-¢

2.4
Execute Transaction

type transaction_

I A

Figure 3.18 Executing Transaction DFD

<from>agccount

Report
Account
Balance

request

sl

Withdraw

Control
Transactions
PAT

Funds from

Account

<from>ac Transfer
Funds
amount Between atm_
Accounts transaction_
result

trans
request

Deposit
Funds to
Account

request

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

c-lgmleyD

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

3.2.1.2.1 Check Security Code
NAME: ATM

TITLE:
Check Security Code

INPUT/OUTPUT:
Customer_Card_Info: data_in
card_identification_number: data_in
security_code: data_in
customer_id: data_out

message: data_out

BODY:

Look up the card_identification_number in the Customer_Card_Info

store. If the atm card's security code matches the <user_entered>
security_code, send out the corresponding customer _id. If the
<user_entered>security_code does not match the assigned security _code,
send an <error>message to the Customer.

Modified on: January 21, 1997 3:21 pm page: 3-613

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

0-s1;5
Control ATM Session STD

Idle

card_sdgnsed/
check_sgecurity

code status = “REJECTED"/
eject_card
Check
Security
Code
2

status = “APPROVED"/
begin_trangaction

Process
Transaction

3

transaction_done/ contirjue_session

print_statement = “TRUE"/ _
begin| transaction

Check for
Another
Transaction

4

continue_session

= FPALOoL T/
end_session

Figure 3.16 STD of a Control ATM Session

Modified on: January 21, 1997 3:21 pm page: 3-6(B

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:obed

BHS-€

0;7
Automatic Teller Machine System

message Check

Security
Code

check_security
code

in
%N

sensed

—cantinue

Customer_

Card_
/ Info

Col%t&tlstlcs

session
end
m Activate Session icdustomer_
Control s2| Processes PAT
s1] Session STD
transaction_ t
dohe am_
trans transaction_
result
request
Execute
Transaction
message v/
2 atm_
transaction_
depost result
ban baRk_
trangaction trangaction_
gfiey retyrn - requast

Figure 3.15 DFD 0 of an Automatic TellerMachine Syste

statisgieal_
repeft

state

Produce

Statement

nt

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

¢-igrleyD

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

Modified on: January 21, 1997 3:21 pm page: 3-58

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

status (control flow, del) =

["APPROVED" | "REJECTED"]

* specifies whether the security code has been approved or rejected. *
time (data flow, cel) =

* time in hours and minutes, on the 24-hour clock *
transaction_data (data flow) =

[withdrawal_data | inquiry_data | deposit_data | transfer_data]
transaction_done (control flow, del) =

["TRUE" | "FALSE"]

transaction_history (store) =

@transaction_id + atm_location + transaction_type + 1{account}2 + (amount) +
1{balance}2 + date + time

transaction_id (data flow, cel) =

* a unique number identifying the particular transaction *
transaction_type (control flow, del) =

["WITHDRAWAL" | "INQUIRY" | "DEPOSIT" | "TRANSFER"]
transfer_data (data flow) =

<from>account + <to>account + amount + customer _id
withdrawal_data (data flow) =

<from>account + amount + customer_id

year (data flow, cel) =

* the last two digits of the current year *

Modified on: January 21, 1997 3:21 pm page: 3-573

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

. month (data flow, pel) =
* one of the numbers from 01 to 12, inclusive *
. print_statement (control flow, del) =
["TRUE" | "FALSE"]
R requested_deposits (store) =
@transaction_id + <to>account + amount + customer_id
. requested_inquiries (store) =
@transaction_id + customer_id + account
. requested_transfers (store) =
@transaction_id + <from>account + <to>account + amount + customer_id
. requested_withdrawals (store) =
@transaction_id + <from>account + amount + customer_id

* |=security_code (data flow, cel) =

PA

«* 3 numeric code that allows customers access to
the ATM network with their ATM card. *
statement (data flow) =

transaction_id + atm_location + date + time + customer_id + transaction_type +

-transaction_data + 1{balance}2

e 3.25 Monitor Senso

. Sstatistical_analysis (store) =

g

L statistics breaking down ATM usage by time, day of the week, location, customer
account type, account balance, and amount of transaction. *
. statistical_report (data flow, cel) =
* a report on ATM usage by ATM location and customer

account type. *

Modified on: January 21, 1997 3:21 pm page: 3-563

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

. customer_id (store, cel) =
* a ten-digit number that uniquely identifies a
Westbrook Bank customer. *
. daily_withdrawal_record (store) =
@customer_id + <todays_withdrawal>amount
. date (data flow) =
month + day + year
. day (data flow, del) =
* one of the numbers from 01 to 31, inclusive *
. deposit (data flow, del) =
["TRUE" | "NULL"]
* receipt of an ATM deposit envelope from the customer. *
. deposit_data (data flow) =
<to>account + amount + customer_id
. end_session (control flow, del) =
["TRUE" | "FALSE"]
. inquiry_data (data flow) =
account + customer _id
. insufficient_funds (data flow, del) =
["TRUE" | "FALSE"]
. message (data flow, del) =
* an error message or prompt to be displayed to the customer. *
. money (data flow, cel) =

* an amount of cash for the teller machine to give to the customer. *

Modified on: January 21, 1997 3:21 pm page: 3-553

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

. bank_transaction_result (data flow) =
transaction_id + transaction_type + balance + (<second>balance)
. bank_transaction_return (data flow) =

[bank_transaction_result | bank_transaction_error]

. begin_transaction (control flow, del) =
["TRUE" | "FALSE"]
. clg;gd_identification_number (data flow, cel) =
* glz-digit code that uniquely identifies a
;qiarticular ATM card. *
. c%d_sensed (control flow, del) =
[FRUE" | "FALSE"]
N
*%signal specifying that an atm card has been inserted
_i%o the ATM *
L
. check_security_code (control flow, del) =
["TRUE" | "FALSE"]
. continue_session (control flow, del) =
["TRUE" | "FALSE"]
* the customer specifies whether or not s/he wants to
continue the ATM session *

. Customer_Card_Info (store) =

security_code + @card_identification_number + customer _id

Modified on: January 21, 1997 3:21 pm page: 3-543

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

Data Dictionary Entries for the ATM system
The DDEs are listed as given below:
. account (data flow, del) =

["NOW" | "Money_Market" | "Checking" | "Savings"]
. account_doesnt_exist (data flow, del) =
["TRUE" | "FALSE"]
. amount (data flow, cel) =
* the amount of money involved in a transaction;
consists of any number of digits followed by
a decimal point, followed by two digits *
. atm_location (data flow, del) =
* the branch location of the automatic teller machine *
. atm_transaction_request (data flow) =
transaction_type + transaction_data
. atm_transaction_result (data flow) =
transaction_id + customer_id + atm_location + transaction_type +
transaction_data + balance + (<second>balance)
. balance (data flow, cel) =
* the amount of money currently available in the customer's account *
. bank_transaction_error (data flow) =
transaction_id + transaction_type + [account_doesnt_exist | insufficient_funds]
. bank_transaction_request (data flow) =

customer_id + transaction_id + transaction_type + transaction_data

Modified on: January 21, 1997 3:21 pm page: 3-53

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:obed

&s-¢

Context-Diagram;4
ATM_Network

MESSage
e
N
Bank VP
statement
Customer
moRgy stajfstical_
regort
d-posit
Automatic
Teller
Machine
. System
seTuity
code

.(:ar_.. - 0

identification

number

bank
Sensed transgction_ request
return
continue_

Bank Accounting
System

Figure 3.14 A DFD Context Diagram of an ATM Network

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

c-lgmleyD

Realtime Software Engineering with ICASE by Ammar & Lateef

Chajasr-3

3.2.3.2 The ATM Example

This section presents the specification of a typical ATM example. The DFD 0 for
thisexample has already been discussedinthe notation description section. The
contextdiagram is shown in the next page in Figure 3.14. This diagram shows the
typical inputs and outputs of an ATM system. The system inputs and outputs to/
fromthe customerare straightforward. Atiming deadlinesinterms offewseconds
should specified for the outputs to the customer. The ATM interacts with a bank
accounting system and a bank statistics gathering system

DFD 0 is shown again in Figure 3.15. The structure of DFD 0 is typical of many
transaction processing systems. The input data processing node, node 1, deals
with input information items such as the card_identification_number. The trans-
action execution node deals with inputs selecting the transaction type and spec-
ifyingtransactioninformation,and producestransactionresultinformationused

by the two output information producing nodes. The control is divided into two
nodes S1 and S2. S1 reads input control signals and uses them to produce the
control signals needed to manage an ATM session. S2 receives control signals
from S1 to activate and deactivate the data processing nodes

The following two figures Figure 3.16 and Figure 3.17 give the C-specs for con-
trollers S1 and S2. The STD in Figure 17 for S1 specifies the states of the
system and the events triggering a state change. The PAT in Figure 3.16 shows
the activation conditions for the data processing nodes in DFD 0.

The P-spec for node 1 in DFD 0 is shown in Figure 3.18. The execute_transaction
node, node 2 in DFD 0, is complex enough and needs to be specified further by a
lower level DFD. Figure 3.19 shows the decomposition of this process in DFD 2.
The data processing nodes in this DFD are divided according to transaction type
(such as withdraw, transfer, deposit, etc.). The controller S1 activates one of
these processes according to the transaction_type input control. The C-spec of
S1is shown in Figure 3.20.

Finally Figure 3.21 shows DFD 3, the lower-level DFD diagram for node 3 in DFD
0. This node specifies the collect statistics data processing functions.The fol-

lowing list summarizes the set of ATM diagrams shown in the next few pages These
diagrams are not a complete specification for the system since several P-specs

of simple function were omitted. Also the data dictionary entries for the data

flow, control flow, and stores must be specified. This list appears in the pro-
cessindex of Teamwork for the ATM model. The number associated with the diagram
name in the list specifies the number of revisions the diagram went through.

. DFD Context-Diagram ATM_Network

. DFD O Automatic Teller Machine System
. STD 0-s1 Control ATM Session STD

. PAT 0-s2 Activate Session Processes PAT
. PS 1 Check Security Code

. DFD 2 Execute Transaction (1, 2, 3, 4)

. PAT 2-s1 Control Transactions PAT (1)

. DFD 3 Collect Statistics (1)

Modified on: January 21, 1997 3:21 pm

page: 3-513

Realtime Software Engineering with ICASE by Ammar & Lateef

Chajasr-3

Logical_Traffic_Signal_Id: data_in
BODY:

For each entry in Low_Traffic_Flashing_Definition
(i.e. each Logical_Traffic_Lane (identified by Street_Id, Direction, and Logi-
cal_Traffic_Lane_Id))

begin
Determine Logical_Traffic_Signal_Id from Logical_Traffic_Lanes store
If Traffic_Signal_State =
Red : Generate FLASH_RED
command to the signal indicated by the Logical_Traffic_-
Signal_Id

end

Figure 3.13 (c)

(c) Flash_ Out_of Order P-Spec

NAME: Traffic Light System
4

TITLE:
Flash_ Out_of Order

INPUT/OUTPUT:

Out_of Order_Flashing_Definition:; data_in
Traffic_Light Commands: data_out
Logical_Traffic_Signal_Id: data_in

BODY:

For each entry in Out_of_Order_Flashing_Definition
(i.e. each Logical_Traffic_Lane (identified by Street_lId, Direction, and Logi-
cal_Traffic_Lane_Id))

begin
Determine Logical_Traffic_Signal_ld from Logical_Traffic_Lanes store
If Traffic_Signal_State =
Red : Generate FLASH_RED
command to the signal indicated by the Logical_Traffic_-
Signal_Id
Yellow: Generate FLASH_YELLOW command

end

Modified on: January 21, 1997 3:21 pm

page: 3-5(8

Realtime Software Engineering with ICASE by Ammar & Lateef

Chajasr-3

Figure 3.13 (a)

(a) Flow Schedule P-Spec

NAME: Traffic Light System
2

TITLE:
Follow_ Schedule

INPUT/OUTPUT:
Change_Mode: control_out
Daily_Schedule: data_in
Current_Mode: data_inout
Time_of Day: data_in

BODY:

if Current_Mode is Signal_Control then
if Time_of_Day is equal to or later than
Daily_Schedule.Flash_Low_Traffic_Start_Time
then
generate Change_Mode event (i.e. set Change_Mode to TRUE)
done
endif

if Current_Mode is Flashing_Low_Traffic then
if Time_of Day is equal to or later than
Daily_Schedule.Control_Intersection_Cycle_Start_Time
then
generate Change_Mode event (i.e. set Change_Mode to TRUE and
send)
done
endif

Figure 3.13 (b)*

(b) Flash Low Traffic P-Spec

NAME: Traffic Light System
3

TITLE:
Flash_ Low_Traffic

INPUT/OUTPUT:
Low_Traffic_Flashing_Definition: data_in
Traffic_Light Commands: data_out

Modified on: January 21, 1997 3:21 pm

page: 3-48

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:obed

8Y-€

0-s1;21
Intersection_ Mode_ Control_ Logic

Reset_after_Failure/
enable “Control_Intersection_Cycle”;
kil| “Fla: of Order”

/enable “Control_Intersedtion_Cycle”

Out_of_Order

Failure_Fed_Button/
enable “flash_Out_of_Order”;
kill “Flas_Low_Traffic”

Change_Mode/
enable “Flash_lJow_Traffic”;
kill “Control_Intgrsection_Cy:

Vehicle_Detected|
enable “Control_|

htersection_Cycle”

Pedestrian_Request/
enable “Control_Intersecti

“Control_Intersection_Cycle”;
sh_Low_Traffic”

Failure_Pedestrian /
enable “Flash_Out_of_Order”;
kit-Contr U:_:I rtersectior |_\/_y\,:c" Controlling_
Traffic
Failure_Traffic_Sensor/
enable “Flash _—o—OTder”; L
kill “C ntersection_Cycle”
Failure_Ped_Button/ Change¢_Mode/
enable “Flash_Out_of_Order”; enable
kill “Control_Intersection_Cycle” kill “Fla

le”

Failure_Traffic_Sensor/
enable “Flash_Out_of Order”;
kill “Flash_Low_Traffic”

Flashing_
Low_Traffic

Fai:ul C_PC‘U‘CDLI icu 1 I’
enable “Flash_Out_of Order”;
kill “Flash_Low_Traffic”

Figure 3.12 The C-Spec sheet of the controller in DFD/CFD 0

n_Cycle”

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

c-lgmleyD

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:0bed

LA 7

0,28

Intersection_ Control_ System

Layer 1: Mode (Control / Low_Traffic / Out_of_Order) Control

nit_variables
Lane_Id
-_— Status (Off/Red/Yellow)
; Daily_Schedul .] - -
Time_of_Dgy Paly_>cnedue Logical_Traffic_Lanes ID%\?{m'{'iga}]fﬂc_Flashmg_
Logical_Traffic_Stgpal_ld
Current_Modeg
Logical_Traffic_SigNal_Id
Flash .
Low_Traffic
Follow
Schedule
3 Traffic_Liypk{_Command
Change_Mode I
2}
o
ol
Traffic_Light_Corfifnand
Failure~Ped_Button
Flash
Reset_after_Failure Out_of_Order

dilure_Pedestria

allure_Traffic_Sensor,

) Vehiclé_Detected
Pedestrian_Request

Out_of_Order_Flashing_
Definition

Lane_Id
" Status (Off/Red/Yellow)
Buttor, |dentifier

raffic_Light_ Commands

Control__
Intersection_
Cycle

Pedestrian_Signal_Commands

Figure 3.11 An Example of a DFD/CFDO Diagram

Sensor_Jdentifier

Figure 3.19 Control Transactions PAT

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

¢-igrleyD

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

The controller bar shown in the middle Figure 3.11 activates or deactivates the functions 1, 3,
and 4. The unlabeled control flow signals originating at the controller bar to these functions
are actually activation signals and should not be shown in the figure. A syntax error will be
produced by the Check facility of Teamwork/RT when the syntax of the diagram is being
checked. The C-spec for this controller is shown in Figure 3.12. This is a Mealy STD with
three states. The initial state Controlling_Traffic represents the normal mode of operation for
the system. Any transition entering this state activates the Control_Intersection_Cycle process
in Figure 3.11 (bubble 1) which generates the proper commands for this mode.

Process Specifications

Primitive processes in DFD/CFD 0 are represented by P-specs as shown below in Figure 3.13.
The specifications of processes 2, 3, and 4 are given. The name, title, and the input/output
section of each process will be automatically generated by Teamwork/RT when the P-specs
are created for the respective bubbles from DFD/CFD 0. The body section is specified by the
analyst to show how the output flows are obtained from the input flows. The specification
body shown for process 2 in Figure 3.13 (a) is incomplete, it shows that a value of TRUE is
given to the output flow Change_Mode when a condition for changing the operation is
satisfied. However, the value of the Current_Mode store is not changed to reflect the new
current mode of operation. The specification should be completed by adding a statement to set
the current mode to the proper value when a mode change occurs. The specification of
processes 3 and 4 show the commands generated for the low traffic or out-of-order flashing
modes of operations, respectively.

References

[TWK/RT] Teamwork/RT User’s guide, Cadre technologies, Inc.

[DEMARCO 82] Tom DeMarco, Controlling Software Projects, Yourdon Press, 1982.

Modified on: January 21, 1997 3:21 pm page: 3-463

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

. Time_of_Day (data flow, pel) =
*HH : MM : SS in 24 hour format *

. Traffic_Light_Commands (data flow, pel) =
Logical_Traffic_Signal_Id
+ Next_State Traffic_Signal

. Traffic_Signal_State (data flow, del) =
["RED" | "YELLOW"]

. Trigger_Control_Intersection_Cycle (control flow, del) =
["TRUE" | "FALSE"]

. Trigger_Flash_Low_Traffic (control flow, del) =
["TRUE" | "FALSE"]

. Trigger_Flash_Out_of Order (control flow, del) =
["TRUE" | "FALSE"]

. Type (data flow, pel) =
["Left_Turn" | "Through"]

. Vehicle_Detected (control flow, del) =

"TRUE"

DFD/CFD 0 and Control Specifications C-spec 0-s1

The top level functional decomposition shown in Figure 3.11 consists of five functions. The
functions are briefly described as follows. An Initialize function used to initialize the system
parameters. These parameters are stored in five data stores specifying respectively the daily
schedule of operation store, the current mode of operation store, the specifics of the traffic
lanes of the intersection store, low traffic flashing definition store (e.g., flashing yellow signal
or flashing red signal for each lane), and the out-of-order flashing definition store. The
Follow_Schedule function changes the mode of operation of the system depending on the
command flows for the three different modes of operations respectively.

Modified on: January 21, 1997 3:21 pm page: 3-4533

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

Activate Session Processes PAT

Figure 3.17 Activate Session Processes PAT

&-¢ :obed

check_security_code | begin_transaction | print_statement | end_session “Check Security Code” ‘Execute Transaction” ollect Statistics” ‘Produce Statement”
“TRUE” *can'thappen* | . i appen* *ﬁgggen* 1 0 0
“can't happen* “TRUE” *can't happen* *ﬁgggen* 0 1 0
can't happen *can't happen* “TRUE” *can't 0 0 0
happen*
can't happen *can't happen* *can't happen* “TRUE” 0 0 1

jo9¥eT % Jewwy Aq ISVl yum Buussulbul aiemyos awinjeay

¢-igrleyD

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

. Pedestrian_Lane_Id (data flow, pel) =
* integer - assigned as an identifier for each
cross walk or pedestrian lane. *
. Pedestrian_Lanes (store, del) =
0 { Pedestrian_Lane_Id
+ Crossing_Street_Id
+ Direction
+ Logical_Pedestrian_Sensor_Id

+ Logical_Pedestrian_Signal_Id }

. Pedestrian_Request (control flow, del) =
"TRUE"
. Pedestrian_Signal_Commands (data flow, pel) =

Logical_Pedestrian_Signal_Id + Next_State Ped_Signal

. Reset_after_Failure (control flow, del) =
"TRUE"
. Sensor_Identifier (data flow, pel) =

* reference to table containing physical interface information. *
. Signal_Control (data flow) =

not-defined.

. Street_Id (data flow, pel) =

*alpha_numeric - an assigned key or identifier *

*refers to the entries in the Intersection Definition table. *

Modified on: January 21, 1997 3:21 pm page: 3-43

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

. Logical_Traffic_Signal_ld (data flow) =
* Reference to physical interface information. *

. Low_Traffic_Flashing_Definition (store) =

{ Street_Id
+ Direction
+ Logical_Traffic_Lane_Id

+ Traffic_Signal_State

. Next State Ped_Signal (data flow, pel) =

["WALK" | "FLASHING_WAIT" | "WAIT"]

*This actually "implementation specific". These values
are exemplary. *
. Next_State_Traffic_Signal (data flow, pel) =
not-defined.
. Out_of Order_Flashing_Definition (store) =
{
Street_Id + Direction + Logical_Traffic_Lane_Id

+ Traffic_Signal_State

Modified on: January 21, 1997 3:21 pm page: 3-423

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

. Init_variables (data flow, pel) =

not-defined.

. Logical_Pedestrian_Sensor_Id (data flow, pel) =
* reference to table contiaining interface information for
these devices *
. Logical_Pedestrian_Signal_Id (data flow, pel) =
* reference to a table contining the physical interface
interface information for these devices *
. Logical_Traffic_Lane_Id (data flow, pel) =
* integer - combines with Street_Id & Direction

to uniquely identify a logical lane *

* one logical lane may correspond to two adjacent physical lanes*
. Logical_Traffic_Lanes (store) =
{ Street_Id
+ Direction
+ Logical_Traffic_Lane_Id
+ Type
+ Logical_Traffic_Sensor_Id

+ Logical_Traffic_Signal_Id }.

. Logical_Traffic_Sensor_Id (data flow, pel) =

* reference to table containing physical interface information. *

Modified on: January 21, 1997 3:21 pm page: 3-413

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

* an attribute of a street *

* Each 2 way street that is part of an intersection is
divided into a primary and secondary component. For example,
given a north/south street, the north bound traffic may
be identified as the primary component, and the south identified
as the secondary component. These distinctions are seen in the
decision table - 1.5.1-s1 - the rules governing the operation

of the signal. *

* may combines with Street_Id to uniquely identify a step
of the intersection cycle *
. Failure_Ped_Button (control flow, del) =
['TRUE" | "FALSE"]
. Failure_Pedestrian (control flow, del) =
['TRUE" | "FALSE"]
. Failure_Traffic_Sensor (control flow, del) =

['TRUE" | "FALSE"]

. Flash_Low_Traffic_Start_Time (data flow, pel) =
Time_of Day
. Flashing_Low_Traffic (data flow) =

*not-defined®.

Modified on: January 21, 1997 3:21 pm page: 3-4(B

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

Data Dictionary Entries
The DDEs for traffic light system are given below:
. Button_ldentifier (data flow, pel) =

* reference to table contiaining interface information for

these devices *

. Change_Mode (control flow, del) =
"TRUE"

. cont_temp (control flow) =
{sss|aaa}

. Control_Intersection_Cycle Start_Time (data flow, del) =
Time_of Day

. Crossing_Street_Id (data flow, pel) =

* The Street_Id of the street that this pedestrian lane crosses *
. Current_Mode (store, pel) =

["Signal_Control" | "Flashing_Low_Traffic"]

. Daily_Schedule (store) =
{ Control_Intersection_Cycle_Start_Time

+ Flash_Low_Traffic_Start_Time

. Direction (data flow, pel) =

["Primary" | "Secondary" |

Modified on: January 21, 1997 3:21 pm page: 3-38

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:abed

BE-C

Context-Diagram;15
Intersection Control System

Pedestrian_
Crossing_
Request_
Button

Failure_PRed_Button

Button_Nentifier

Initialization

Init_vanables

Intersection_
Custodian

Reset_aftgr_Failure

Pedestrian_Requeést

Intersection_

Traffie—

fght_Commands

Traffic_Light

Control_

System

Pedestrian_Signal_Commands

SensorAdentifier

Failure_Traffic_Sensor

Traffic_
Sensor

Vehicle"Detected

Time_o{ Day

ailure_Pedestrian

Pedestrian_

Signal

Clock

0T'€ aIinbl4 weibeig xauod 8yl OT'E€ I4NOI-

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

¢-igrleyD

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

intersections involving two two-way streets with left turn lanes. The following diagrams are
developed using the requirements stated in Chapter 1.

The Context Diagram

The context diagram shown on the next page specifies the input and output flows and the
external components interacting with the system. The system reads in sensors vehicles in the
intersection or pedestrian requests and produces commands to the traffic light component and
the pedestrian signal component. The system also reads in the Init_variables flow and use it to
initialize the system parameters used for the different modes of operation (such as flashing
signal for low traffic times, flashing out of order message, or the normal Green-Yellow-Red
operation cycle). The failure signals obtained from the external devices are used to set the
system in an Out_of Order flashing mode. The Time_of Day input is used to put the system
in the Flashing_Low_Traffic mode.

Modified on: January 21, 1997 3:21 pm page: 3-373

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

PS 3.1 Collect Transaction History (1)

PS 3.2 Calculate Transaction Statistics (1)

PS 3.3 Print Statistical Report (1)

PS 4 Produce Statement (1)

3.2.3.3 AMS

DFD Context-Diagram Aircraft Monitoring System (8, 9, 10, 11, 12, 13)
DFD O Monitor Aircraft (19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34)

PAT 0-s1 Monitor Aircraft PAT (1, 2, 3)

DFD 1 Monitor Sensor

PAT 1-s1 Monitor Sensor PAT (1, 2, 3, 4)

SEM 1-s2 Monitor Sensor SEM (1, 2)

PS 1.1 Record Time-out (1, 2)

PS 1.2 Determine Range (1, 2, 3, 4)

PS 1.3 Determine Fuel Capacity (1, 2, 3)

PS 1.4 Receive Sensor Data (1, 2, 3, 4, 5)

DFD 4 Generate Alarm (1, 2, 3, 4,5, 6,7, 8,9, 10, 11, 12, 13)
SEM 4-s1 Generate Alarm STD (1)

PAT 4-s2 Generate Alarm PAT (1, 2, 3, 4,5, 6, 7, 8)

STD 4-s12 Generate Alarm STD (1, 2, 3, 4, 5)

PS 4.1 Add Out-of-Range Alert to Queue (1, 2, 3, 4,5, 6, 7, 8)
PS 4.2 Reset Lamp (1, 2, 3, 4, 5)

PS 4.3 Add Smoke Detector Alert to Queue (1, 2, 3)

PS 4.4 Add Fuel Alert to Queue (1)

The first example is simple enough to grasp and yet contains all the elements and
characteristics of real-time systems. The second example is somewhat more complex since it
involves customer interaction. This system is used by all of us and thus is very intuitive to
follow and understand. The third example is chosen to be more involved and is a good
example of a hard real-time system. The requirements models presented for these systems are
logical functional models of the system and do not imply any specific physical

implementation.

3.2.3.1 Traffic Intersection Control System

This example is typical of many traffic intersection control systems used in any intersection
involving pedestrian crossing. The system can be used with simple intersections involving one
way street interrupted by crosswalk. It can also be used with typical more complex

Modified on: January 21, 1997 3:21 pm page: 3-363

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

The Teamwork Update_bang utility assists the analyst in specifying the model, the sub-tree
within a model, and the above parameters for the bang measure. The Calc_bang utility
calculates the bang metric and produces a table of showing the bang metric for each FPO and
the total bang metric for the sub-tree.

3.2.3 Requirements Analysis Examples

In this section, several examples on the requirements analysis and specification concepts
presented in the previous sections are discussed. These examples are obtained from the
Teamwork Samples directory which contains examples of models developed using Teamwork
tools.

The section describes some artifacts of three examples. The requirements of some of these
examples are given in Chapter 1. These examples are:

1. Traffic intersection control system
2. Automatic Teller Machine system
3. Aircraft Monitoring System

DFD Context-Diagram Intersection Control System (15)

DFD O Intersection_ Control_ System (28)

STD 0-s1 Intersection_ Mode_ Control_ Logic (21)

PAT 0-s2 Process Activation Logic - Modes of Operation for Traffic
Light (3)

PS 1 Control_ Intersection_ Cycle (14)

PS 2 Follow_ Schedule (36)

PS 3 Flash_ Low_Traffic (24)

PS 4 Flash_ Out_of_Order (21)

PS 5 Initialize (4)

3.2.3.2 ATM

DFD Context-Diagram ATM_Network

DFD O Automatic Teller Machine System

STD 0-sl1 Control ATM Session STD

PAT 0-s2 Activate Session Processes PAT

PS 1 Check Security Code

DFD 2 Execute Transaction (1, 2, 3, 4)

PAT 2-s1 Control Transactions PAT (1)

DFD 3 Collect Statistics (1)

Modified on: January 21, 1997 3:21 pm page: 3-3%3

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

1. Each input or output value of a flow must be consistent with the flow DDE specification.

2. Each title or number of an activated process in a PAT, STD, or SEM must be consistent
with its specification in the DFD/CFD.

3. Each column in a PAT must have a valid process title or number, and must be activated
in at least one cell in this column.

4. In a STD the following specific rules are checked:
a) Each state in a STD must have a unique name and number.
b) There must only one initial transition, and it may only have an initial action.
c) Each state must have at least one incoming transition.
d) Each transition except the initial transition must have a triggering input event
5. In a SEM the following specific rules are checked:

a) Every input event must have a designated column in the matrix with the event name
appearing at the top.

b) A state name specified as a next state in an event column must have a single row in
the matrix (i.e., its name appears in the state name column).

c) Every cell in an event column must have an action/next state or only a next state
transition

The Bang Metric Utilities

The bang metric is a relative measure of the size and complexity of the systems requirements.
The bang measures can be used to predict project effort and which functions will require the
most resources to develop and how changing requirements will

affect the project schedule and resources allocated.

The bang metric supported by Teamwork for requirements specification artifacts is based on
DeMarco’s concept of functional primitives [DEMARCO 82]. Functional primitives (FPs) are
the most primitive components in the specification. In a Teamwork/RT based specification, the
FPs are the primitive processes in a DFD specified by P-specs, and the Controllers in a CFD
specified by a PAT, a DT, a STD, or a SEM. The bang metric is produced by assigning weights
to all FPs depending on their level of complexity. FPs are classified by DeMarco according to
their level of complexity. Classes of FPs such as combining input data, performing simple
calculations, performing complex math computations, performing device management,
displaying information, performing control and synchronization operations, etc., are given
default weighting factors specified in a weight table. The analyst must specify the class of
each FP in the model or sub-tree for which a bang metric is to be calculated. The analyst must
also assign token count to each incoming or outgoing data flow or control flow in each FP.

Modified on: January 21, 1997 3:21 pm page: 3-348

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

4. Index editors: these are a model index editor containing a list of all models in the
database, a process index editor containing a list of all objects created for a specific model, a
note index containing a list of all the notes created for a specific model, and a data dictionary
index editor which provides a list of all data dictionary entries (DDES) created for a specific
model.

Two important facilities which greatly solidify the role of ICASE environments in the
development process are the check facility and the metric utilities. These are discussed further
in the following paragraphs.

The Completeness and Consistency Check Facility

The most important facility provided by Teamwork/RT is the checking facility which checks
the completeness and consistency of models and all objects created by the tool. This is crucial
specially for large scale models where errors can be very difficult to trace and correct. The
checking facility consists of a DFD/CFD check, a P-spec check, a Matrix check, and a STD
check.

The DFD/CFD check may be applied to the specific DFD/CFD diagram where the check
option is selected or to the sub-tree rooted at the current DFD/CFD. In the later case the DFD/
CFD syntax and balancing of all child processes and C-specs are performed. The syntax and
balancing rules checked include the following:

1. Every bubble, C-spec bar, store, and a terminator must have a name.
2. Every flow should be connected to bubble or a C-spec bar

3. Stores cannot appear in a context diagram, and terminators can only appear in a context
diagram

4. There only one bubble numbered 0 in the context diagram
5. The input and output flows of a C-spec bar must be control flows

6. Every bubble must have a child DFD or a P-spec, and every C-spec bar must have a C-
spec sheet.

7. Every flow on a child DFD must be appear or be an element of a flow on the parent
bubble.

8. Every flow or a store must have a DDE, and every element of a compound DDE must
also be defined in a DDE.

9. Input flows to a bubble represented by a P-spec can only be data flow (i.e., no control
flows are allowed as inputs to a P-spec)

The C-spec Check is applied to a specific C-spec sheet to check the syntax rules for PATSs,
DTs, STDs, or SEMs. These rules include the following:

Modified on: January 21, 1997 3:21 pm page: 3-33

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

5. The total number of nodes in a DFD diagram should be balanced in order to
keep the diagram easy to comprehend and in the same time contain enough
number of nodes to reduce the number and complexity of the lower level
diagrams needed in the hierarchy.

6. If there is ever a doubt about whether a flow or a store is data or control, the
deciding factor depends on whether the information is used to control the
execution or to compute data in the destination process. It is possible that an
information item become a hybrid item when it is used for control in one
process and for computation in another. In this case it is both control/data.

3.2.2 Structured Analysis Using Teamwork/RT

This section briefly describes the main features of Teamwork/RT as an example of ICASE
support for structured analysis of real-time systems. Teamwork/RT is a multi-user and multi-
tasking structured analysis environment. Multi-tasking in this context means that several
development tasks for the objects of a given project model can be carried out concurrently by
a team of analysts. The teamwork/RT tool support consists of the following editors used to
create and navigate between objects of a given model:

1. DFD/CFD editor, used to develop data flow and control flow diagrams,

2. P-spec editor, used to develop and refine process specifications for primitive
processes

3. Matrix editor used to specify PATs, DTs, and SEMs for control specifications (or C-
specs), and

4. STD editor, used to develop Mealy or Moore state transition diagrams for C-specs.

Teamwork/RT interacts with the project database which contains all the models created in the
Teamwork environment. This is supported by a set of editors which are common to other
integrated tools in the ICASE environment. These editors are briefly described as follows:

1. Data dictionary entry (DDE) editor used to specify the definitions of data flows and
stores. The DDEs created are also used an refined by design tools such as Teamwork/SD to be
discussed in Chapter 4.

2. Text note editor used to specify text attached to a model or a model object. This text
can specify special comments to be attached to the model or the object.

3.Picture note editor used to specify graphics to be attached to a model or a model object.

Modified on: January 21, 1997 3:21 pm page: 3-323

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

b)

d)

condition for grouping a set of functional requirements under one process
(a set of cohesive functions should belong to the same process).

functions that have strong interconnections such as having access to
common data stores or a large number of direct data/control flows (if these
functions were defined as different processes a large number of data/
control flows would couple them as well as common resources such as
data/control stores and control signals coming from common controllers).
This condition for defining the boundaries of a process is called the
coupling condition (tightly coupled functions should belong to the same
process).

functions that occur at the same time or with the same frequency as a
consequence of a set of events. This is a weak form of coupling (compared
to the one in b) above) between functions that should be grouped into one
process.

functions that have common input and/or outputs to the same external
entities (i.e, terminators).

2. Decomposition. Define the set of processes in a DFD which specify a higher
level process using the following guidelines:

a)

b)

d)

Partition a process to lower level processes in such a way that tends to
minimize the interconnections (in terms of direct data/control flows)
between them. This is also related to the coupling condition, mentioned
above in 1. b), as it seeks to decompose a process into a set of weekly
coupled processes.

Partition a process into lower level processes such that each of these
processes have a well defined task. This guideline is related to the cohesion
condition in 1. a) above.

Define lower level processes needed to input, monitor, or consume and
validate the input data flows specified for the higher level process (these
processes usually input the raw data, do some initial processing of filtering
for the needed information, and also validate the format and values of these
information. For example, inputting data for a set of sensors then applying
data conditioning and calibration, and validating that the data are in their
predefined ranges to insure that the sensors are operating correctly under
no faulty conditions).

Define lower level processes needed to operate on the processed input data
to produce the output data specified for the upper level processes.
Sometimes starting with the processes that produce the output flows and
then work your way towards the needed input processes could be easier.

3. The composition of a new data/control flow or store must be known before
adding it to the DFD and should be precisely named and recorded in the data
dictionary.

4, The total number of flows in a DFD diagram and the number of flows
associated with a particular process should be minimized. If a process has too
many flows it should be partitioned further into several processes.

Modified on: January 21, 1997 3:21 pm page: 3-313

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

The correctness and completeness of the context diagram is an important initial step which
must be thoroughly checked and reviewed. All data and control flows represented as
external interfaces should be defined in the data dictionary. In the case of an evolutionary
development process model, the requirements on the external interfaces might be partially
defined. In this case, the interfaces should be specified as much as possible and clear
comments should to be attached to those interfaces which are not yet completely specified.

In developing the context diagram emphasis must be put on the simplicity and readability
of the diagram. Therefore, abstraction and aggregation are two important techniques that
should be utilized to obtain a simpler diagram. External entities and data/control flow can
be abstracted by defining supertypes or general types. For example, using general entities
such as sensors, actuators, communication equipment, displays, switches etc. help in
abstracting external entities and simplifying the diagram. Aggregation is the technique of
combining several different entities or data/control flows together in one compound entity
or flow. For example, placing a control panel which consists of switches, displays, and
lights as one external entity can be one possible way of simplifying the context diagram
via aggregation.

The following level of the hierarchy in the Figure is a data flow diagram (entitled DFDO)
which represents the major functions outlined in the functional requirements. These
functions represent a top level decomposition of the software under developed.
Consequently the whole DFDO is viewed as the child of the process or the bubble
representing the system in the top level (i.e., process 0 in the context diagram). Each
bubble in DFDO (numbered 1,2,3, etc.) will have either its own child DFD or a P-spec
sheet describing it in more detail as shown in the Figure. DFD1, the child DFD of process
1 in DFDO, has its processes numbered 1.1, 1.2, 1.3, etc. DFDi.j.k.l, i=j=k=1=1,2,3,...,
specifies the details of function I in DFDi.j.k in level 3. DFDi.j.k specifies function k in
DFDi.j in level 2. DFDi.j specifies function j in DFDi in level 1 which in turn specifies
function i in DFDO. Also C-spec sheets are used to specify the controllers shown in each
DFD. At any given level i the C-spec sheets for this level should be labeled as i-s1 for
controller s1, i-s2 for controller s2, etc., must be specified using a PAT, DT, STD, or an
SEM as described above.

Guidelines for Developing the Analysis Model

In developing DFDO and the lower level DFDs, P-specs, and C-specs, several techniques
and guidelines have been suggested in [Shumate&Keller 92] to guide the analyst through
the model development process. The objective again as mentioned above to develop a well
structured and model with emphasis on simplicity and readability of the specification
diagrams. These techniques and guidelines are summarized below:

1. Aggregation. Define a process in a DFD such that it groups together a number
of functions from the functional requirements that satisfies the following
conditions:

a) functions that work together to accomplish a specific task. Examples are:
the task of interacting with the operator (or processing the pilot requests),
the task of controlling the speed of a vehicle, the task of monitoring a set of
sensors, the task of generating an alarm, that task of data recording, etc.
This condition for defining a process is also termed as the cohesion

Modified on: January 21, 1997 3:21 pm page: 3-3(B

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

accelerate_cmds = [start_accelerate| stop_accelerate]

In the above case the cruise commands are defined to activate, deactivate or resume the
operation of maintaining the speed of a vehicle. Start_accelerate and stop_accelerate
commands are used for setting the speed to a higher limit.

Primitive Information Items

Primitive information items are either continuous or discrete. A continuous information
item is characterized by its range, resolution, and units, whereas discrete information
items are defined by the set of values or symbols it assumes. The sensor_type data item
described in example (1) above is an example of a discrete data item. The sensor_value
data item in the same example is a continuous data item whose range and resolution is
determined by the sensor type, for example for the temperature sensor the range for the
sensor_value can be -20 to 100 degrees F, with a 0.1 degree resolution.

3.2.1.2 The Structured Analysis Model

This section describes the structured analysis models (also called the requirements
models) for real-time software systems. Figure 3.9 shows a three dimensional view of the
model using the notation described in the previous section. The top layer consists of what
is commonly termed as the context diagram (CD). The context diagram is the highest level
DFD/CFD in the model. It describes the boundary of the software under analysis as well
as the external interfaces and the external entities. The software under consideration is
shown as a single process (bubble) in the middle surrounded by input/out data and control
flow (representing the external interfaces) from/to the external entities represented by
rectangles (termed as terminators) as discussed above.

FIGURE 3.9 Components of SART and their relationship with each other
Context Diagram

DDE I:I—7©]

C-Spec

DFD-0

M = S

P-Spec
DFD-1 DFD-2
—
e R v

Modified on: January 21, 1997 3:21 pm page: 3-28

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

1) sensor_data = sensor_id + sensor_value
sensor_id = sensor_type + sensor_No
sensor_type = [“Temp” | “Pressure” | “Fuel” | “Smoke”]
* four types of sensors are assumed, these are temperature sensors,
engine pressure sensors, fuel capacity sensors, and smoke detection
sensors *

sensor_No = 2{decimal_digit}5
the sensor number is 2 to 5 decimal digits

The above example defines sensor_data, sensor_id, and sensor_No as compound data
items. Primitive data items are sensor_value, sensor_type (which has one of four possible
symbols), and decimal_digit (which can be defined as a data item with one of ten possible
symbol 0-9)

2) objects = [coins| slugs]
defines objects detected by a vending machine

coins = {[quarters|dimes|nickles]}8
defines the types and from 0-8 coins can be expected

3) alert_queue = {sensor_id}
* defines a queue consisting an unlimited number of objects specified by the
sensor_id data defined in example 1) above*

4) cruise_cmds = [[activate|resume]
+ ([start_accelerate | stop_accelerate])
| deactivate]

*cruise commands are defined as either activate/resume or deactivate. The activate
command starts the speed control function where the current speed of the vehicle is maintained,
the resume command is used after cruising was deactivated to maintain the previously selected
speed. If either activate or resume are selected they can be followed by an optional command which
is either start_accelerate or stop_accelerate.

Complex expressions can be obtained when the selection, concatenation, and optional
operations are combined as shown in the above example. The above example shows that a
start_accelerate or a stop_accelerate commands must always be preceded by an activate or
a resume command which could be contradicting or violating the system requirements. It
should be emphasized that simplicity and readability are important criteria that should be
followed to avoid errors when defining compound information items. The information

item specified in example 4 above can be redefined by breaking it into two items to allow
for simpler expressions as follows:

cruise_cmds = basic_cmds + (accelerate_cmds)
basic_cmds =[activate| resume| deactivate]

Modified on: January 21, 1997 3:21 pm page: 3-28

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

3.2.1.1.4 The Data Dictionary

The data dictionary contains the definition of all the information items consisting of flows
as well as the stores both for data and controls.

Information items, in general, are divided into two types: primitive data items; and
compound data items. Primitive information items are those items not composed of any
other data items. Compound data items on the other hand may be composed of other
compound data items and/or primitive data items. Examples of primitive data items are, a
temperature sensor reading, a binary switch reading, operation status, or an identification
number. Examples of compound data items are operator command which consists of
several different types of commands, sensor data consisting of the readings of different
sensors, etc. Compound data are needed for the purpose of abstraction to define the data
hierarchy, which makes the analysis diagrams and tables easily manageable and readable.
The DFDs functional hierarchy usually requires also some form of data hierarchy where
compound information items are used in the higher levels of hierarchy and primitive
information items are used in the lower levels.

Compound Information Items

The notation used by many ICASE tools for defining compound information items are
described below. The following table presents the symbols used in defining compound
information items.

Symbol Meaning Description
= Composed of used to define a compound information item in terms of other informatipn
items.
+ together with used to specify the set of(concatenation)components of an information item
(concatenation) | (similar to a concatenation operation).
M{}N M to N iterations | used to define repetitive occurrences of components defined inside the ¢urly
of what is {}. M and N are used to define a the lower and upper limits on number of iter-

enclosed in {} ations, respectively. If any or both are omitted, the default for M is zero, pnd
for N is unlimited number.

[select one of square brackets containing several components separated by | defineg an
expression in which exactly one of the specified components are selectad at
any given instance of the information flow.

() Optional expressions between parentheses may or may not appear in the flow instance.
Literal used to define literal symbols (e.g., “TRUE”, “Temp”, “Fuel”, see the exam-
ples below).
* x Comment text describing the data flow should be enclosed in asterisks.
Table 2:

Examples of compound information items are as follows:

Modified on: January 21, 1997 3:21 pm page: 3-273

Realtime Software Engineering with ICASE by Ammar & Lateef

Chajasr-3

handle for complex controllers, where the number of states and/or the number of
transitions are large. SEMs contain the same information contained in STDs but in a
tabular form. It can specify a sequential controller with a large number of states.

Each row in an SEM corresponds to a particular state of the controller. The set of columns
consists of event columns followed by an actions column. Each input of the controller is
represented by an event column in the table. This cells in the table for the actions column
specify the actions performed for each state (following the Moore model) numbered by

their order of execution.

The cells in the table for the event columns are filled to specify what happens when a
given state receives a particular event. A cell contains the set of actions performed
(following the Mealy model) numbered by their order of execution followed by a slash

and the name or number (i.e., row number) of the next state to be transitioned to the
particular state-event combination which the cell represents. This corresponds exactly to a

labeled transition in the STD.

Note that the SEM contains cells in the events columns for all state-event combinations. In
cases in which the event at a particular state is “ignored” or simply “can’t happen” the cell
is left blank with no specifications of actions or next state. This is the main difference
between SEMs and STDs. STDs does not show the event ignored or cant' happen cases at
all since it only specify transitions representing recognized and serviced events. This is
why SEMs are more suitable for verification than STDs since the analyst must give a
consideration to each state-event combination. “Event ignored” cases simply mean that
the event is consumed and nothing happens, whereas “Can't happen” specify the case in
which the state-event combination can never occur in reality. Since this might be a source
of errors in the analysis, the analyst should provide a note explaining why (unless it is very
obvious) such combination can never happen or such an event should be ignored.

FIGURE 3.8 An example of an SEM

1-58¢
hanitor Sensar SER

Statesf sensor data . one second
Events received timeout interrupt
reading_request;
Idle - *don’t care™ fidle set timerf
Lo Polling Sensor
Polli record timeout,
S iny fdle sensor_data_ *don’t care”
ensor- received/ldle

Modified on: January 21, 1997 3:21 pm

page: 3-263

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:0bed

&e-¢
01 1noIyIp A1dA awo2aq Apjainb Aayl ‘1Ienamoy ‘siajj0nuo0d [enuanbas Jo uoneuasaidal

aAISsaIdxa 1SOW aY) Se 0] paliajal ale Aay) 10e} Ul ‘pueisiapun pue melp 0] Asea ale sals

(SINTS) seoueN JUBAT/a1eIS

4-51:5 ‘

sensor_status = "IN"f

Generate Alarm STD
sensor_status = "IN" in_range

alert_action = "RESET"

sensor_status = "OUT"
sensor_status = "IN"
— sensor status = "OUT"
outl in2
2 5
sensor_status = "IH"
sensor_status = "OUT"
sensor_status = "IN" sensor status — "OUT"
outz inl
4 5
sensor_status = "OUT"f
alert_action = "GEMERATE"
out_of_ sensor status = "IN"
range
El

sensor_status = "OUT"

Mote : 3 consecutive out of range readings are required before an alert is generated.
3 congecutive in range readings are required before an alert is reset.

a.ls ue jo aidwex3 /'€ 34NOI

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

c-lgmleyD

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

Every STD contains an initial state in which the control processes starts when the
controller is activated. This state is designated by a transition specified by an incoming
directed arc with no source or origin (i.e., incoming or originating from the empty space).

An important note, concerning process activation signals specified as actions in Mealy
STDs, is that activation signals associated with a transition are assumed to continue in
effect until the next transition occurs. This means that an activated process will remain
active until the next transition occurs. There is no need for deactivation signals since
processes are automatically deactivated, unless they are activated again in the next
transition. For Moore STDs, a process activated at a given state will remain active until a
transition to different state in which the process in not activated occurs.

Modified on: January 21, 1997 3:21 pm page: 3-243

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

FIGURE 3.6 An example of a PAT.

1-51;4
honitar Sensar PAT

sensor_data fuel data record
= - — - . — Z 3 1
received received timeout.
TRUE" 1
"TRUE" P 1
"TRUE" | ! 2 1

State Transition Diagrams (STDs)

STDs specify controllers consisting of a sequence of states for sequential controls. A
rectangle is used to define each state and directed arcs between rectangles specify
transitions from one state to another. A state transition is caused by a specific event
consisting of a combination of input control values and produces actions consisting of
process activations and a combination of output control values. A PAT can be used with a
STD to specify the process activations for the various state transitions.

There are two well known sequential machine models used to define sequential
controllers. These are the Moore model and the Mealy model. In a Moore type model, the
output actions (process activations and output control value) are associated with the states,
whereas in a Mealy model the actions are associated with the transitions between states
(i.e., with state-event combinations).

STDs can be of the Mealy type where the output controls and process activations are
associated with the state transitions. In this case a transition is labeled by the event causing
it followed by a slash followed by a set of numbered actions. The number given to an
action specify the order in which it is executed (e.g, a value is specified for an out put
control flow, or an activation signal is asserted). STDs can also be of the Moore type (in
which the output controls and process activations are associated with the states
themselves), in which case a state definition rectangle consists of a state name followed a
slash followed by the set of numbered actions. It is possible to mix the two notations in
one STD, in which case a hybrid Mealy/Moore model is defined. The model will be
developed depending on whether it is more convenient to specify actions (i.e, generating
outputs or activating processes) within the rectangles defining states or specify actions
with the arcs representing transitions. Each output action must be specified with a state (or
a set of states) or with a transition.

Modified on: January 21, 1997 3:21 pm page: 3-23

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

use of don't cares (blank entries) simplifies the table. The control outputs specified may
contain process activation signals.

FIGURE 3.5 An Example a DTS

1-51;1
Heating_Reguest_Controller

Temp_low Temp_High : : Heat_Req_1
"“TRUE" E E on
"TRUE" off

Process Activation Tables (PATs)

This type of C-specs is also used to specify a combinational controller which has no
explicit output controls. It used to specify process activation for a given combination of
input controls. A PAT is a special case of a DT in which the names of the processes to be
activated are specified instead of the output control flows.

Modified on: January 21, 1997 3:21 pm page: 3-223

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

FIGURE 3.4 P-Spec of Process 1.8

NAME: 1
TITLE: Check Security Code
INPUT/OUTPUT:

Customer_Card_Info: data_in)
card_identification_number: data_in
security_code: data_in
customér_id: data_out

message: data_out

BODY:

Look u? the card_identification_number in the Customer_Card_Info
store. If the atm Card's security'code matches the <user “enteréd>
security_code, send out the corresponding customer_id- If the
<user_entered>security_code does not match the assigned security _
code, send an <error>message to the Customer.

3.2.1.1.3 Control Specifications (C-specs)

A control node (or a controller) in the CFD is specified by a control specification artifact
called C-spec. A C-spec determines in detail how when the out control flows of the control
node are asserted. It also specifies the currently activated processing nodes in the
corresponding DFD. The activation signals to the processing nodes are not shown
explicitly as outputs of the control node.

The notations for C-specs are divided into four different types:

» Decision Tables (DTs);

* Process Activation Tables (PATS);
e State Transition Diagrams (STDs);
» State/Event Matrices (SEMSs).

The choice of a particular type depends on the control node of the problem at hand. DTs
are used to specify combinational controllers which assumes only one state. A STD or a
SEM are used for specifying sequential controllers consisting of several states. PATs are
used to specify combinational control nodes used for activation of processing nodes. A
controller specified by a PAT should have no output control flows (activation signals are
not considered to be explicit output flows of control nodes). These types are further
described in the following discussion.

Decision Tables (DT)

A DT is similar to a truth table in combinational digital circuit design except that here
inputs and outputs do not have to be logic variables but can be any discrete variable
defined over a finite set of values. DTs specify combinational controllers (i.e., controllers
with only one state). Each row in a DT specifies the values for the output control items for
a combination of input control items. The combination of inputs not specified by a row in
the table are assumed to be don't cares. Also specific inputs or outputs which are left blank
in any given raw are also considered don't cares. Don't care conditions arise from the
combination of inputs that can never occur or from the same output produced by several
combinations of inputs (in which case some the inputs are specified as don't cares). The

Modified on: January 21, 1997 3:21 pm page: 3-213

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

* A processing node can never consume a control flow item except when it is defined
by a lower level DFD/CFD containing a control node which actually consumes the
control flow item.

* A processing node can produce a control flow item using input data flows. For
example a processing node which monitors temperature readings (temperature
reading is an input data flow) can produce a control flow with a true or false value
depending on the temperature value being greater than a given threshold temperature.

3.2.1.1.2 Process Specification (P-specs)

Each primitive processing node in a DFD diagram (i.e., a simple processing node which
does NOT have a child DFD in a lower level to specify it in finer detail) must have a P-
spec. A P-specs in essence is the child of the primitive processing node it describes. It
shares the same input and output flows and specifies how the produced output flows are
obtained from the consumed input flows.

P-Specs are defined in terms of textual specification describing a process that is
procedural. Structured English is used to make the text concise. The intent of structured
english is to combine the rigor of a programming language and the readability of English.
The following four structures can be used in a P-spec:

« Concurrency: Statements under this section specify operations on input data or
computations of output data which can be done in parallel.

* Sequence: this section or structure specifies sequential operations. The statements in
the section after the very first statement should start with the clause “next” or the
clause “then” to emphasize the sequential relation between operations.

» Decision: This section consist of “if-then-else” statements to specify conditional
operations.

* Repetition: this section consists of “while” a “for”, a “repeat-until”, or a “cycle”
clause to specify a repeated section of operations.

P-specs can also contain mathematical equations and illustrations such as tables,
diagrams, and graphs to ensure that specifications are complete and unambiguous.Figure
Figure 3.4 shows a P-spec for processing node 1 in Figure 3.2.

Modified on: January 21, 1997 3:21 pm page: 3-2(B

wd TZ:€ /66T ‘Tz Afenuer :uo payipo

:obed

HI-€

0;7

Customer_

Card_
/ Info

Automatic Teller Machine System

message Check

Security
Code

check_security

_
e T
—continue %N
session
end
m Activate Session i%usmmer‘

. Sgggg'ﬂ LA 52| Processes PAT
s

card-sensed

transaction_

dohe atm_

trans

result
request

Execute
Transaction

transaction_

statisgieal_

Statistics
Collect
state

Produce

Statement

\

atm_
transaction_
result

nt

AI0MISN N1V Ue JO d4D/d4d €€ 3dN9ld

j981e7 % Jewwy Aq 3SVOI yum Bunssulbug aiemyos awinjeay

¢-igrleyD

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

* A control flow information item, on the other hand, is consumed by a control node to
be used in activating and deactivating processing nodes, or in producing out going
control flows.

Modified on: January 21, 1997 3:21 pm page: 3-18

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

A data store (two solid horizontal bars), represents an information repository
ranging from a simple data buffer or queue to a large data base.

A control store (two dashed horizontal bars) represents a memory component
containing information items used by controllers (as control flows).

Figure 3.3 shows an example of a DFD/CFD. The diagram specifies the data flow, control
flow, and the major data processing and control activities in an Automatic Teller Machine
(ATM). Four data processing nodes (bubbles), two control nodes, and three data stores
are shown. The first node checks the customer card number and security code against the

customer information database. The node produces a control flow signal called status
which specifies whether the card and the code were approved or not. If not approved, an
error message is sent to the customer. If approved, the customer ID information is stored
in a data store to be used by other nodes.

The second node in Figure 3.3 executes transactions requested by the customer. This node
produces statistics sent as a data flow to node 3 and stores the current transaction result in
a data store to be used by node 4 to print the statement for the customer at the end of the
ATM session. Control node S1 senses the card_sensed control flow input and if true it
produces a true on the output flow labeled check security _code. This flow is used by
control node S2 to activate processing node 1. S1 then waits for the status control signal
produced by processing node 1. If the value of this signal specifies that the card is
approved, S1 produces a true on the begin_transaction output flow. S2 will use this flow to
activate processing node 2. When processing node 2 is done with the current transaction it
generates a true on the transaction_done output control flow. This flow is then used by S1
to sense the continue_session input flow. If it is true, it produces a true on the
begin_transaction output flow used to start another transaction by S2. If continue_session
is false, S1 produces a true on both end_session and print_statement output flows used by
S2 to activate processing node 4 and terminate the ATM session.

Control Flows vs. Data Flows

One of the major confusing items in DFDs/CFDs is the difference between control flow
and data flow information items. By definition, any information item used directly for
controlling the data processing activities or is specified as an input or an output of a
control node must be designated as a control flow information item, otherwise the
information item is a data flow. The following remarks should help in clearing up the
confusion,

* A data flow information item is consumed by a processing node to be used for
computing the value of an expression.

Modified on: January 21, 1997 3:21 pm page: 3-173

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

The notation for DFDs/CFDs consists of the following components as shown in Figure
3.2:

External Entities (represented by rectangles, also called terminators to terms),
specify entities which are outside the boundaries of the system (or the CSCI) to be
modeled. These entities are either hardware components or software components or
other systems which produce (or consume) information needed (or produced) by the
modeled system. Examples of external entities are operators, sensors, actuators, etc.

* processing nodegrepresented by circles or a bubbles), specify processing functions
within the boundaries of the modeled system. The naming of nodes should represent
the actions performed and should always start with a verb followed by an object on
which the verb acts. For example, names such as poll sensors, input pilot commands,
display pilot data, etc. are all correct names for processing nodes. A processing node
operates on a set of input data or control information and produces a set of output
information which might also be data or control information. A processing node
represents a transformation at a given level of abstraction. If the transformation is
complex, the processing node is associated with (i.e., is a parent of) a lower level
DFD/CFD (also called the child diagram) which represents the transformation in a
finer level of detail. This hierarchical nature of structured analysis model will be
explained further in the next section.

» data flows(represented by solid lines) are directed links originating (or produced)
from an external entity, a processing node, or a data store and terminating (or
consumed by) at an external entity, a processing node, or a data store. (see the a, b, ¢
cases in the Figure). A data flow may represent a single data item or a group of data
items abstracted or combined under one name. A group data flow associated with an
input or an output of a parent processing node may be divided into its element data
items at the child DFD/CFD. Data flows are described in details in terms of its
elements and the values they might take in the data dictionary of the structured
analysis model.

» control nodes(represented by vertical bars) represent controllers which activate
processes specified by processing nodes in the same diagram, and consume and
generate control signals (or control flows). A control node symbolizes a part of the
control section in any computing system which takes care of controlling the data
processing elements in the processor. The details of the control process in a control
node are specified in another sheet by a state transition diagram and/or a table (e.g., a
process activation table, decision table, or a state-event table). Every control node is
labeled to distinguish it from other control nodes in the same control flow diagram.

» control flows (represented by dashed lines) is a directed link originating from an
external entity, a processing node, or a control node, and terminating at a control
node, or an external entity (a control flow is also allowed to terminate at a processing
node only if this node is defined by a lower level DFD/CFD having a control node
which consumes the control flow).

Modified on: January 21, 1997 3:21 pm page: 3-163

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

. Entity-Relationship Diagrams (ERDs) provide an information model for the
data items and control signals and the relationships among these data items. It
used to facilitate the representation and specification of information items.

Information modeling and ERDs will be explained in detail in section 3.3 on Object-
Oriented Analysis (OOA). The first four artifacts above will be described in the following
subsections.

3.2.1.1.1 Data Flow and Control Flow Diagrams (DFDs/CFDs)

Data flow diagrams (DFDs) specify the data processing activities in a system. A control
flow diagram (CFD) specifies the flow and the processing of control information in the
system. DFDs consist of processing nodes and data flows and data stores, whereas CFDs
consist of control nodes, control flows and control stores. DFDs and CFDs are tightly
coupled since the control nodes in a CFD controls the activation of processing nodes in its
corresponding DFD, which in turn might produce a control flow used as an input for a
control node in the CFD. The two diagrams can be drawn separately for very complex
systems. However in hierarchical analysis the emphasis is to keep the combined DFD/
CFD diagram simple at any given level of the hierarchy and divide the complexity among
several lower level DFD/CFD diagrams. In the sequel we will explain the notation of the
combined DFD/CFD diagram.

FIGURE 3.2 Objects used in Structured Analysis

Control FIoWw -~ _ __

T
m
Buhble
Term
A
Store
51| C-Spec

Modified on: January 21, 1997 3:21 pm page: 3-153

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

requirements or refinements of incomplete requirements in an evolutionary
development process.

. Problems of size must be dealt with using the effective method of partitioning.
This is precisely why hierarchical functional decomposition is one of the crucial
steps in this method.

. Graphics must be used whenever possible. This is exemplified by the maze of
diagrams needed to specify the functional levels in large problems.
. We have to differentiate between the logical (essential) and physical

(implementation) considerations. Engineers are often tempted to include
implementation details early to further specify the requirements and narrow down
the design alternatives.

Demarco then proceeded further to establish requirements for the structured analysis method
as follows: the method should help us partition our requirements and document that
partitioning before specification; it should give us means of keeping track of and evaluating
interfaces; it should facilitate the development of new tools to describe logic and policy better
than narrative text.

3.2.1.1 The ICASE Notation for Structured Analysis

The notation used for creating structured analysis diagrams by most ICASE tools are
introduced in this section. This notation is based on the work of Hatley and Pirbhai [HAT
87] mentioned briefly in the section 3.1.2. As mentioned in this section, the notation
consists of following types of artifacts:

. Data Flow and Control Flow Diagrams (DFDs/CFDs). These diagrams model
the processing of information in terms of data and control flows; data
processing nodes and control nodes (or controllers) are defined to represent the
data processing functions and the control functions, respectively, from the
requirements of the system under analysis. Data flow information items are
those information items received and processed by processing nodes, whereas
control flow information items are used by the control nodes to control the data
processing activities in the system at hand.

. Process specifications are used to described the details of the data processing
nodes defined in a DFD. These specifications consist of scripts of pseudo-code
or just plain text which explains how the output flows of a particular
processing node is generated from its input flows;

. Control specifications are used to describe the details of controls nodes (or
controllers) in a CFD. These specifications define the behavioral (or state)
model of the controllers and specify how the output control flows are obtained
from the input control flows. They also specify when the data processing nodes
are activated or deactivated.

. Data Dictionary which defines all the information flows and the data and
control stores in the system. It contains text hat defines each information item
and its value range.

Modified on: January 21, 1997 3:21 pm page: 3-143

Realtime Software Engineering with ICASE by Ammar & Lateef) ' Chapxer-3

3.2 Structured Analysis for Real-Time Software Using
ICASE

The structured analysis technique introduced briefly in section 3.1.1 is discussed in detail in this
section. ICASE tool support given in Teamwork/RT will be illustrated using examples. The
section starts by introducing the notation used, the supported features in Teamwork/RT are
described, and several examples are presented at the end of the section. These examples are
obtained from the Samples directory of Teamwork.

3.2.1 Introduction to Structured Analysis

In his well known book on Software Engineering, Roger Pressman [PRESS 93, pp207-208]
describes structured analysis as follows:

“Structured analysis, like all software requirements analysis methods, is a model building
activity. Using a notation that is unique to the structured analysis method, we create models
that depict information (data and control) flow and content, we partition the system
functionally and behaviorally, and depict the essence of what must be built. Structured
analysis is not a single method applied consistently by all who use it. Rather it is an amalgam
that has evolved over almost 20 years.”

FIGURE 3.1 Structured Analysis Methodology

Data p Output Data
> Processing
Input Functions > Qutput
Dat ;
ata Controls
Control Coaontrol
Information Sjgnals
Input Controllers 0
. - » Output
Controfs Controls

There are probably no other software engineering method that has generated as much interest,
been tried (and often rejected and tried again) by many people, provoked as much criticism,
and sparked as much controversy. But the method has prospered and has gained widespread
use throughout the software engineering community.

Tom Demarco, one of the pioneers of structured analysis, described the need for such a
method more than 16 years ago [DEM 79, pp15-16]. He suggested to make the following
additions to the analysis phase goals to overcome recognized problems and failings of the
analysis phase:

. The products of analysis must be maintainable. This applies particularly to the
target document (i.e., the Software Requirements Specification document).
Maintainability here is very much needed to facilitate changes due to changing

Modified on: January 21, 1997 3:21 pm page: 3-13

