

module output to correspond to a fault based on a certain
probability. Different algorithms for a system function can
be implemented using code segments, so that the analyst
has a handy prototype for testing fault tolerant
specifications.

4. Control Specification in the Structured Analysis domain
can have ambiguous or undefined attributes. The analyst
should collaborate with the developer to correct these
attributes during the formal model development process.

6 References

[1] Hooker S., Lockyer M.A., Fencott P.C., “CASE Support
for Methods Integration: Implementation of translation
from a structured to a formal notation”, Proceedings of the
Methods Integration Workshop, Leeds, 25-26 March 1996,
Springer-Verlog.

[2] Amoroso E. G., “Creating formal specifications from
informal requirement documents”, ACM SIGSOFT, Soft-
ware Engineering Notes, Vol 20 no 1, pp 67-70, Jan 1995.

[3] Fraser, M.D. & Kumar, K. “Informal to formal require-
ment specification languages: Bridging the gap”, IEEE
transactions on Software Engineering, pp 454-, Vol. 17,
No. 5, May 1991.

[4] Pezze M., Elmstrom R., Lintulampi R., “Giving Semantics
to SA/RT by means of High-Level timed petri nets”, The
international journal of time critical computing systems,
Vol. 5, no 2/3, May 1993.

[5] “Automatic translation of SA/RT to high level time Petri
nets” Espirit report, URL:http://www.ifad.dk/projects/
iptes-ifad.html, IPTES-PDM-17-V2.3. 1994

[6] Jensen K., “Coloured Petri nets: basic concepts, analysis
methods and practical use”, Springer-Verlag, Berlin; New
York April 1992.

[7] Functional and Performance Requirements Specification
for the Earth Observing System Data and Information Sys-
tem (EOSDIS) Core System. Revision A and CH-01.

[8] Flight Operations Segment (FOS) Requirements Specifica-
tion for the ECS Project, Volume 1: General Require-
ments, November 1994. By Hughes Applied Information
Systems.

[9] K. Lateef, H.H. Ammar, V. Mogulothu, T. Nikzadeh, “A
Methodology for Verification and Analysis of Parallel and
Distributed Systems Requirement Specifications”, in Pro-
ceedings of the 2nd IFIP International Workshop on Soft-
ware Engineering for Parallel and Distributed Systems
(PDSE-97), IEEE Computer Society, May 1997.

[10] H. Ammar, T. Nikzadeh, and J. B. Dugan,” A Methodol-
ogy for Risk Assessment of Functional Specifications of
Software Systems Using Colored Petri Nets,” in Proceed-
ings of the 4th International Software Metrics Symposium
(Metrics’97), IEEE Computer Society, Nov. 1997.

greater than that of sequential case because the commands
which are being processed by the initial modules still have
to wait to be uplinked when a command being transmitted
experiences an uplink_failure and is being retransmitted.
Although this difference is not much (see figure 4), for a
particular command the pipelined case might take a lot
longer to uplink the command due to failures in system
modules and uplink failures of the previous commands as
well as itself. Also when realtime commands are read from
a preplanned script then the rate of input commands would
be greater and this would make the commands wait longer
than usual in the pipeline case. This also adds to the risk
involved for the pipelined execution. Since under real time
conditions a command might miss the deadline for
uplinking which may result in hazardous conditions. This
needs to be taken care of in the system design.

5 Conclusions and Lessons Learned

This paper presented an example for generating
formal specification models based on Colored Petri Nets.
The models are generated from specifications based on
Structured Analysis and Real Time (SART). One of the
important characteristic of the methodology used is
scalability. It can be applied to large scale distributed
systems. The example presented is based on a component
of the Flight Operation Segment of NASA’s Earth
Observing System. Results of performability analysis of
this model are discussed. There were several lessons
learned from the above application. Some of these are
described as follows.

1. When software is developed to implement complex
systems for real time applications, allowing concurrency
in execution of different subsystems is an important
design decision. There is a need for tools supporting the
design and verification of such software. Colored Petri
Nets provide an effective way of modeling such
parallelism. As discussed in this paper the analyst can
make use of the Colored Petri Net notation to model the
concurrency in execution of different subsystems.

2. For the EOS Commanding model, the concurrent
execution of the system components in the pipelined
specification improves the performability of the system
but it also adds to the complexity and risk factor of the
system specifications [10].

3. In our methodology of verification of fault tolerance
requirements, code segments were used for simulating the
failure and repair activities of system functions as in the
case of BSRC and Verify_Command functions of the EOS
Commanding model. Code segments can also be used to
inject faults into the module behavior by changing the

Thus the average response time for the pipelined case is
almost equal to that of the sequential case, but if a
sequence of preplanned realtime commands is read from a
script of commands then the average response time of a
command will be much larger than the sequential case.
This is because the input rate would be higher and there
will be a build up at the communication channel. The
commands have to wait for longer times at the channel for
being uplinked. This is an added risk in the pipelined
design since some of the commands will have a large
waiting time. These commands may violate the deadlines
of uplinking and execution because of this delay.

Performability analysis of the pipelined design:

In this case, the commanding model was simulated

with faulty behavior in the system. This was accomplished
by simulating the effects of failure and recovery in the
system functions such as BSRC and Verify_Command.
The failure and recovery activities of these modules were
simulated by adding CPN ML code in the code segments
associated with the respective transitions to simulate the
activity of causing a failure with which an estimated
recovery time is attached. The degraded performance of
the system under failures and repairs is observed in the

g p

 # of Commands Uplinked Successfully
 # of Commands Processed

 time

0 10000 20000 30000 40000 50000 60000 70000 80000

 # of Commands

0

5

10

15

20

25

30

35

40

45

50

C

Scenario 5 : Sequential Execution under Failures in Communication and Fault Injection
FIGURE 2: Throughput of

 # of Commands Uplinked Successfully
 # of Commands Processed

 time

0 10000 20000 30000 40000 50000 60000 70000 80000

 # of Commands

0

5

10

15

20

25

30

35

40

45

50

C

 Pipelined Execution under Failures in Communication and Fault Injection
FIGURE 3: Throughput of

simulation. This scenario is simulated for a sequential
design of the system and also for a pipelined design and
the relative performance is evaluated.

The throughput of commands for the pipelined
execution under failures of the system modules is again
larger when compared to the throughput for sequential
execution under the same conditions (see figures 2 & 3).
This indicates that the pipelined design has improved the
system performance under faulty conditions also.
However, the throughput of the pipelined model should
reduce when commands are flushed from the pipeline due
to an uplink or execution failure. The response time per
command in both pipeline and sequential execution is
greater than (almost 2.5 times) the channel utilization time
per command. When there are failures in the system
modules then the commands experience a delay in
processing and there will be a decrease in the build up at
the communication channel. When the faulty modules like
BSRC or Verify_command fail and the system takes some
time to recover to normal execution, the communication
channel can uplink the commands which were already
processed and verified.

It is also observed that the processing time for each
command is not the same throughout and that some of the
commands are lost without being uplinked. Whenever
there is a loss of command we can observe this by the
widening of the gap between the lines representing the
total commands processed and total commands uplinked
(see figures 2 & 3). The average response time (the
response time per command) for pipelined execution is

 Avg. Response TIme
for Pipelined Execution

 Avg. Response Time
for Sequential Execution

 Avg. Channel Util. TIme
for Pipelined Execution

 Avg. Channel Util. Time
for Sequential Execution

1632

1432.77

653.77

615.77

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

C

Sequential Execution under Failures in Communication and Fault Injection
Pipelined Execution under Failures in Communication and Fault Injection

FIGURE 4: Response time & Channel utilization
time per command for Sequential & Pipelined
execution under failures

The Controller enables the Transmission_Command
function to uplink the next command. When the uplinking
of a command is done then the Next_Command token is
set to true so that the next command can be uplinked
(Transition T13 puts a token in the Next_Command
place). When a command is being uplinked the Controller
enables the Count_Transmission_Number function
(transition New_Com fires).The transmission command
function can be fired for retransmitting a command when
an uplink failure occurs. The retransmission is done only
when the Retransmission_Command token is set to Enable
and when the Transmission_Limit_Reached is not false.

When the Spacecraft_Command_Status token
received from Evaluate_Spacecraft_Command_Status
function is set to Uplink Failure then a retransmission of
the command is attempted. The operator is also notified of
the Uplink Failure. If there was no failure then the
Controller goes back to the Wait_Command state to
process the next command (transition T16 fires).

The code segments of the transitions update the
number of Commands processed and the number of
Commands uplinked and collect the statistical data for the
execution.

The CPN model for Commanding was validated
using the formalism of Petrinets and through the
simulation of this model several inconsistencies were
found in the Teamwork model of Commanding.

4 Performance Analysis of the Commanding
Component

This section discusses the performance analysis
carried out on the Commanding component of the EOS
system and presents the results and conclusions of the
analysis.

The following scenarios were simulated to assess the
performance and/or performability of different execution
profiles of the Commanding model.

Performance under normal sequential execution:

The Commanding model was simulated to analyze
the performance under favorable conditions. The timing
behavior of each module was specified and it was assumed
that all the modules function normally. The simulation of
this scenario produces measures on the throughput and
total execution time of the operator commands. The
average response time for a command and the average
channel utilization time are also calculated. The average
channel utilization time was almost equal to the average
response time. This indicates that the bottleneck in the
system is the communication channel. This is because the

time taken to build, validate & verify a command is
comparably less than the time taken for uplinking of the
command and downlinking of the command_status. The
total execution time for a sequence of 45 operator input
commands was more than the sum total of the response
times for these commands because of the time taken for
the input of the commands. The response time per
command was constant, since each command encounters
the same conditions.

Performance under pipelined normal execution:

In this case instead of processing one command at a
time, a sequence of operator commands are pipelined
through the system. Several functions are concurrently
active to process the command sequence.

The flexibility of Colored Petri Net notation to
express the control flow of a system greatly eases the
anlayst’s efforts to design alternate specifications and
explore the system behavior under such specifications.
The analyst may need to make minor modifications to
come up with a different specification of the system. The
State Transition Diagram specification of TeamWork is
limited in the sense that it does not allow the specification
of a parallel design without the introduction of many more
states and transitions making the system too complex to
visualize and analyze. The specification of the pipeline
design in the Design/CPN model is almost identical to the
sequential design. The minor modification that was done
in the EOC controller is an addition of an arc from the
Transition T-10 to the State Wait_Command (see figure 6).
In the sequential scenario the when Verify_Command
processes the output of
Build_Spacecraft_Realtime_Command, all other
processes are inactive and the next
Operator_Command_Input will be processed only after
the current command is transmitted. In the pipeline design
the firing of transition T-10 deposits a token in the
Wait_Command state as well as Verify_Command state.
This enables the Build_Spacecraft_Realtime_Command
to process the next Operator_Command_Input even while
the previous command is still being processed. This is
propagated to all other processes down the line. Thus a
pipelined execution of the system is effected.

The performance improvement under this pipelined
design is observed. The throughput of commands for the
pipelined execution is double the throughput for
sequential execution under the same conditions. The
average response time is only slightly greater than the
sequential case. The response time per command was
constant throughout the execution of the simulation. This
is because the input rate of commands is low considering
the time taken for the operator to input the command.

performed by the Commanding module are listed below
according to the NASA requirement specifications [7],[8].

• Generate and verify real-time commands. This is
accomplished by the functions
“Build_Spacecraft_Realtime_Command” and
“Verify_Command” [7].

• Merge and uplink the pre-planned and real-time
commands to EDOS. The functions
“Merge_Command” and
“Transmission_Command” are responsible for
this job [7].

• Receive and evaluate the command status. This is
done by functions “Evaluate_ Spacecraft_
Command_Status” and “Receive_ Command_
Status_Data” [7].

• The automatic retransmission is also provided
when an unsuccessful transmission occurs. This is
managed with the help of the function “Count_
Transmission_ number” [8].

The Build_Spacecraft_Realtime_Command
function generates the spacecraft realtime command based
on the operator command input and the pre-planned
command script. Verify_Command checks the
authorization level of a command and determines whether
a specific command is critical based on its definition [8].
Merge_Command merges a Valid_Realtime_Command
and a Valid_Preplanned_Command.
Transmission_Command receives Uplink_Data_ Stream
from the Merge_Command sub-function and sends it to
the space crafts as a Spacecraft_Uplink_Data.
Count_Transmission_Number controls the retransmission
efforts needed when the data received from the space craft
indicate that the command has been rejected.
Receive_Command_Status_Data is used to monitor the
status of data received by the space craft. The
“Evaluate_Spacecraft_Command_Status” function
verifies the successful receipt and execution of all
commands by the spacecraft [7].

3 CPN model of the Commanding subsystem

The model of the Commanding subsystem as
described in the previous section was built using the
CASE tool TeamWork. The Teamwork model of
Commanding was translated to the Design/CPN
environment for Dynamic Analysis. The translation was
preformed by mapping the semantics from Teamwork to
Design/CPN as described in [9]. The Hierarchy page of
the CPN model is shown in figure 1. The CPN page
corresponding to Commanding DFD is shown in figure 5
and the CPN page corresponding to the Controller for
Commanding is shown in figure 6. The CPN model

mapped from the Teamwork model needs to be completed
by adding the missing semantics needed for dynamic
analysis. CPN Meta Language code is written to map the
outputs from the inputs. The information needed to
implement a particular scenario is also added to the model.
Thus the model is customized for each simulation and the
behavior of the model is analyzed under different
scenarios.

The CPN page corresponding to the Controller for
Commanding is shown in figure 10. It contains the control
specifications for the Commanding module as a whole. It
produces the tokens necessary for the invocation of the
functions of the Commanding module.

The transition T1 is enabled by the presence of the
token START. When the transition T1 fires the Controller
goes to the state Wait_Command and waits for the input of
a command. The function init() is invoked which
initializes the statistical variables needed for the dynamic
analysis.When an Operator_Command_Request token is
received by the Controller it goes to the state
Build_Spacecraft_Realtime_Command and enables the
BSRC module (transition T9 is fired). When the BSRC
module is done processing the request the Controller
enables the Verify_Command function (transition T10 is
fired). If the Command_Authority_Violation (CAV) is
false and the Command is Non_Critical then the
Controller enables Merge_Command (transition T4 fires).
If the Command is Critical then the operator is informed
(transition T5 fires) and upon receipt of a positive
response from the operator goes to the Merge_Command
state (transition T7 fires).

When Merge_Command function is done and the
Uplink_Required token is set to true then the Controller
goes to the Uplink_Command state (transition T11 fires).

FIGURE 1: The hierarchy page of CPN model.

Hierarchy#10010

Commandi#2

M Prime

BuildSRC#3

VeriComm#4

EvalSCS#5

BSRC-Con#6

ESCS_Con#8

EOC_Comm#9

VCom-Con#7

Glob#1

Val_Com#19

Check_Co#11

Check_CC#13

Temp_Dec#14

Transmis#9 Trans_Co#16

Evaluate

Build_Sp BSRC_Ctr

ESCS_Ctr

Verify_C

EOC_Cont

Vrfy_Ctr

Val_Com

Chck_C_A

Chck_C_C

Transmis Count_Tr

Abstract

This paper deals with the problem of performability
analysis of Parallel and Distributed Systems (PDS) specifi-
cations originally developed using a CASE tool. The spec-
ifications are mapped from a Structured Analysis Realtime
(SART) environment to a rigorous notation based on
Coloured Petri Nets (CPNs). CPNs are used to model and
analyze concurrency in the specification and design phases.
Dynamic simulations of CPN models are conducted for
performance/performability analysis. A model of a large
industrial scale PDS is presented to illustrate the usefulness
of this approach. The model is based on a component of
NASA’s Earth Observing System (EOS).

1 Introduction

The objective of this work is to develop methods
and techniques for generating verification and analysis
models from notations used for Parallel and Distributed
Systems specifications. The resulting verification models
can be subjected to extensive and exhaustive verification
of the requirement specifications.

This paper presents an application of the
methodology developed by us to integrate a CASE
environment based on SART (Structured Analysis with
Real Time) notation and CPN (Coloured Petri Nets) based
verification environment. The methodology of integration
of these tools is explained in detail in a separate paper [9].
Semantics mapping rules are used to map SART objects to
corresponding CPN objects. A model of a large scale
parallel and distributed system based on requirement
specifications of NASA’s EOS (Earth Observing System)
was developed to illustrate the scalability of our

methodology. This paper focuses on the application of our
methodology for verification & analysis of this model and
presents the results of the dynamic analysis of this PDS
model.

Background

Informal specification languages use combination of
graphics and semiformal textual grammars to describe and
specify software system requirements [2], [3]. These
languages tend to be imprecise and ambiguous. Hence
there is clearly a need to use formal specification
languages for the requirements analysts domain. Colored
Petri Nets (CPNs) can be used for software requirements
and design specification. It is especially useful in rigorous
analysis of the dynamic behavioral properties such as
concurrency analysis, performance analysis, safety, and
reliability analysis. This work shows the applicability of
CPN based analysis to large scale models.

This paper is organized as follows. In Section 2, we
briefly describe the SART model of the Commanding
subsystem of EOS. In Section 3, the corresponding CPN
model is described. In Section 4, the performability
analysis results of the CPN model for a set of scenarios
are.presented. Section 5 presents the conclusions and
lessons learned.

2 Description of the Commanding subsystem
of EOS

The Earth Observing System (EOS) being
developed by NASA is a large scale Parallel and
Distributed System. Based on the requirement
specifications, and scheduling scenario, it was observed
that the commanding module plays an important role. A
model of the Commanding Subsystem was built based on
the requirement specifications of NASA. The major tasks

Performability Analysis of the Commanding Component of NASA’s Earth
Observing System**

V. Mogulothu, H. H. Ammar, K. Lateef, T. Nikzadeh, and Z. Miao
Department of Computer Science and Electrical Engineering

West Virginia University
P.O.Box 6104, Morgantown, WV 26506-6104

** This work is supported in part by a grant from NASA
Goddard to West Virginia University under Contract No.
NAG 5-2129, and by the DoD grant No. DAAH04-96-1-
0419, monitored by the Army Research Office.

