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Abstract

Software designers are motivated to utilize off-the-shelf software components for rapid application

development.  Such applications are expected to have high reliability as a result of deploying trusted

components.  The claims of high reliability need further investigation based on reliability estimation models

and techniques that are applicable to component-based applications.

This paper introduces a probabilistic model and a reliability estimation and analysis technique applicable to

high-level designs. The technique is named "Scenario-Based Reliability Estimation" (SBRE).  SBRE is

specific for component-based software whose analysis is strictly based on execution scenarios.  Using

scenarios, we construct a probabilistic model named "Component-Dependency Graph" (CDG).  CDGs are

directed graphs that represent components, component reliabilities, link and interface reliabilities,

transitions, transition probabilities, and average execution times of components. In CDGs, component

interfaces and link reliabilities are treated as first class element of the model. Based on CDGs, an algorithm

is presented to analyze the reliability of the application as function of the reliability of its components and

interfaces.  A case study illustrates the applicability of the algorithm. The SBRE algorithm is used to identify

critical components and critical component interfaces by investigating the sensitivity of the application

reliability to changes in the reliabilities of components and their interfaces.

Keywords: Component-Based software, Reliability Analysis, Reliability Modeling, Component-Dependency

Graphs

1 Introduction

Component-based software engineering (CBSE) is emerging as a beneficial development paradigm for

building software from existing components by assembling these parts together in an interoperable manner.

Component-based software development is the process of assembling components (including Commercial

Off-The-Shelf components COTS) in an application such that they interact as intended. Each component

requires pre-specified services from the other components. CBSE is touted as the approach to improving

application qualities, decrease time to market, and improve software maintainability and reliability.

However, ensuring a reliable software application is a difficult task even with the use of commercial pre-

tested and trusted software components.

As a result, several techniques have emerged to estimate and analyze the reliability of component-based

applications. There are can be categorized as:
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x System-level Reliability Estimation: Reliability is estimated for the application as a whole. For example

using system testing, or system level architecture evaluation.

x Component-Based Reliability Estimation: The application reliability is estimated using the reliability of

the individual components and their interconnection mechanisms.

The first approach treats the software application as a whole. This approach is not usually suitable for

component-based applications because it does not consider the composition and integrative property of such

systems and doesn't accommodate the reliability growth of individual component. The limitations of this

approach to component-based application are discussed in [Horgan+96].

As for the second approach, we need to estimate:

x Reliability of a Component: Reliability assessment of the components themselves including COTS

components and how those reliability models are affected by the component usage across several

applications.

x Reliability of a Component-Based System: Reliability assessment of applications developed using

software components as their building blocks.

This paper addresses the second problem, and assumes that reliability estimates of the components

themselves are available.

1.1 Motivation

In this paper, we are concerned with reliability estimation models and analysis algorithms for component-

based software whose analysis is substantially based on execution scenarios. This work is motivated by the

need to:

x Estimate the reliability of a component-based application which doesn't depend on the availability of

source code of each component (i.e. fault injection and seeding would not be applicable).

x Develop a probabilistic model and analysis technique for reliability analysis which is applicable at the

design-level even before the integration and actual development phase. Many reliability analysis

techniques use test cases and fault injection to study the reliability of a component-based system. Using

scenarios has the advantage of applicability at early phases.

x Study the sensitivity of the application reliability to reliabilities of components and interfaces. This

would guide the process of identifying critical components and interfaces and analyze the effect of

replacing components with new ones with similar interfaces but with improved estimated reliability.

x Incorporate the effect of interface and component reliabilities as first class elements in a probabilistic

model for reliability analysis.
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x Develop a technique to analyze the reliability of applications built from reusable software components.

The field of component-based software engineering is rapidly emerging to deliver on some of the

promises of software reuse by building domain-specific component repositories and developing

applications using component from these repositories. This emerging discipline exacerbates research to

estimate component reliabilities and analysis the reliability component-based applications.

1.2 Contribution

This paper addresses the problem of reliability modeling and reliability analysis in component based

applications. We propose a new technique called Scenario-Based Reliability Estimation (SBRE), which

builds on the analysis scenarios of a component-based application. A Component Dependency Graph (CDG)

is proposed as a new probabilistic model which incorporates component and interaction probabilities, and

their reliabilities. An algorithm is proposed to analyze the reliability of component-based applications using

components, interfaces and links reliabilities. The SBRE algorithm is applied to a case study to discuss the

variations in the application reliability based on component reliability and interface reliability growth. We

also discuss the effect of different usage of components on applications developed from these components.

The contribution of this paper is a new scenario-based technique to model and analyze the sensitivity of the

application reliability to component and interface reliabilities. We are not estimating the absolute application

reliability over its execution lifetime. Instead, we limit our analysis to the average execution time of a usage

scenario.

This paper is organized as follows. Section 2 describes scenario-based analysis for component-based

applications. Section 3 defines the elements used in constructing the component dependency graphs (CDG).

In Section 4, we discuss the new SBRE algorithm. Section 5 describes the applicability of the algorithm to a

case study and show how the algorithm can detect critical components and critical component interfaces.

Section 6 discusses related work in reliability of component-based applications and highlights limitations

and differences. Finally, we conclude this paper in Section 7.

2 Dynamic Behavior Analysis using Scenarios

Scenarios are means of analyzing applications and understanding their dynamic behavior.  Scenarios are

useful during design because they bridge the gap between architectures and implementation, they also add

behavior analysis capabilities to design structures[Weidenhaupt+98]. One way to model scenarios is using

sequence diagrams. Sequence diagrams specify interactions between application entities in a timely

sequence manner. In particular, they show the entities participating in an interaction, their lifelines (how

long they remained active), and their interactions as time proceeds. An interaction can be a method

invocation to an object (in an object-oriented context), a procedure call, a generated event, or a message

exchanged.
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Scenarios are used to analyze the dynamic behavior of component-based applications. We adopt Sequence

Diagrams as means of documenting a scenario for a component-based application. We also use the word

interaction as a general term to refer to possible types of interaction and collaboration between components.

The notation of sequence diagrams between components is similar to those used for Message Sequence

Charts (MSC) or Interaction Diagrams in UML [UML99] with some generalization of the terms. A

component sequence diagram is a two-dimension graph: the vertical axe represents time, and the horizontal

axe represents different components. Time proceeds down the vertical axe. The time axe can be used as a

metric for time measurement. There is no significance to the horizontal ordering of components. A vertical

dotted line shows the lifeline of a component, i.e. its existence in the scenario, while the actual execution

periods of a component is shown by a vertical rectangle starting and ending at the start and end point of

execution of a component.  Figure 1 shows an interaction diagram between three components C1, C2, and

C3.

Figure 1 An example of component sequence diagram

Using these sequence diagrams, we are able to collect statistics required for CDG graphs such as average

execution time of a component in a scenario, average execution time of a scenario, and possible interactions

among components as discussed later.

Scenarios are also related to the concepts of operations and run-types used for operational

profiles[Musa+96]. A scenario with specified input variables are similar to an operation run-type. A generic

scenario, with less details about specific input values but for specific input domain, is similar to an operation

with several run-types. Finally, a profile of the execution probability of scenarios is similar to operation

profiles. Operation profiles have long been used to guide testing, development, and performance analysis by

identifying frequently executed operations. Here, we use scenarios to derive a probabilistic model for the

purpose of reliability analysis of component-based systems. The frequency of scenario and component

executions are incorporated in one model, CDG, on which we conduct reliability analysis.

C1 C2 C3

Time
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3 Component Dependency Graphs (CDGs)

Staring with the basic notion of control flow graphs, we develop a probabilistic model called component

dependency graph.  Control flow graphs are the classical method of revealing the structure, decision points,

and branches in program code [Pressman97]. A flow graph is a directed graph that consists of a set of nodes

and directed edges G=<N,E>. Each node represents one or more program statements. The total number of

nodes is the size of the set (N), and a maximum of a NxN directed edges exist in the graph. Each edge

represents the transfer of execution control from source to destination. Each edge is an ordered-pair <n1,n2>.

Depending on a decision taken at a certain node, the next execution is one of its children.

We adapt the control flow graph principles to component-based applications to represent the dependency

between components and possible execution paths. We call this graph "Component Dependency Graph",

CDG.  In this section we define the graph, and in the following section we describe how to calculate these

parameters for a component based application.

Definition 1: Component Dependency Graph "CDG"

A component dependency graph is defined by CDG= <N,E,s,t>, where:

<N,E> is a directed graph,

s is the start node, t is a termination node

N is a set of nodes in the graph, N={n}, and

E is set of edges in the graph, E={e}.

Definition 2: A Node "n"

A node n models a component and is defined by the tuple < Ci, RCi, AEci > where:

Ci is the component name,

RCi is the component reliability, and

AEci is its average execution time of he component Ci

Definition 3 : Component Reliability "RCi"

It is the probability that the component Ci will execute correctly (fault free) during its course of execution.

Definition 4: Average Execution Time of a Component "AEci"

It is the average execution time of a component Ci. The execution time of a component varies according to

the type of service it provides and the scenario that activates this service.
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Definition 5: A Directed Edge "e"

A directed edge e models the execution path from one component to another and is defined by the tuple

<Tij,RTij,PTij> where:

Tij is the transition name from node ni to nj and denoted <ni,nj>

RTij is the transition reliability, and

PTi is the transition probability.

Definition 6: Transition Reliability "RTij"

It is the probability that data and information sent from component Ci to component Cj will be delivered

error-free. This probability includes possible interface errors and possible channel delivery errors, as

discussed in Section 4.1.3

Definition 7: Transition Probability PTij

It is the probability that Cj will execute next given that Ci is currently executing.

Thus, a CDG is defined as follows:

CDG = <N,E,s,t>
N = {n}, E ={e}, s and t are the start and termination nodes
n = < Ci, RCi, AEci >
e = <Tij, RTij, PTij>
Tij = <ni,nj>

Figure 2 shows a CDG example consisting of four components.

Figure 2 A sample CDG

<C1,RC1=0.2, AEc1=3>

<T12,RT12=1,PT12=0.8>

<C3,RC3=0.7,AEc3=6><C2,RC2=0.4,AEc2=4>

<C4,RC4=0.8, AEc4=3>

<T13 ,RT13=1,PT13= 0.2>

<T24,RT24=1,PT24=1>
<T34 ,RT34=0.9,PT34=1>

s

<T43 ,RT43=1,PT43=0.7>

t

Prob. Of terminate=0.3
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4 Scenario-based Re liability Estimation (SBRE)

The proposed technique to estimate the reliability of component-based application has three steps:

1. Estimation of the parameters used in reliability model(Section 4.1),

2. Construction of the component dependency graph (Section 4.2)

3. Applying the algorithm for reliability senestivity analysis(Section 4.3).

4.1 Parameters Estimation

����� 3UREDELOLW\ RI D 6FHQDULR �36L�

The dynamic behavior of a component-based application can be specified using set of scenarios

characterizing the application behavior. Each scenario has a certain probability of execution depending on

the nature of the application. The probability of a scenario is the execution frequency of that scenario with

respect to all other scenarios and is denoted as PSi. The execution probabilities should sum to unity:

where S: is the total number of scenarios in the analysis.

It is usually difficult to exhaustively document all possible scenarios for a certain application usage. In such

cases, to estimate PSi, the concepts of operational profile and equivalence partitioning [Musa+87] could be

used to specify scenario categories. The probability of execution of a scenario category can be estimated

based on the frequency its occurrence as a fraction of the total set of scenario categories. The estimated

parameter PSi will be used to estimate the probability of transitions and average execution time of

components.

����� &RPSRQHQW 5HOLDELOLW\ �5&L�

Several techniques have been proposed to estimate the reliability of software component. In this paper, we

assume that the reliability of individual components has been calculated (numerical formula) or modeled

(mathematical formula). We refer to this estimate as RCi.  Several outlines for component reliability

estimation include fault injection techniques, testing, and retrospective analysis. In case of commercial off

the shelf components (COTS), other factors can be included, such as vendor's credibility, vendor-side and

customer-side testing, and the age of the component. Assessing the reliability of individual components is

outside the scope of this paper, however, we identify some techniques to estimate components reliability in

the sequel.

McDermid [McDermid98] proposed the following techniques to measure and improve the reliability of

software components:

x Retrospective Analysis or Certification using the history of component operation and failures.

1PS
1

i  ¦
 

S

i
Eq 1
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x Wrapping acts as a shelter to buffer inputs and outputs from a component and hence can mask

undesirable outputs. Adding a software wrapper around a component may limit the functionality without

modifying the component itself. Wrappers can operate on input data (input wrappers), output data

(output wrappers), or both.

x Black box Testing against the specification of the component and the requirements of the application.

x Architecture Choices, choosing the architecture such that the application functionality doesn't heavily

rely on a particular component but is achieved by several ones.

Voas [Voas98] discussed some problems in estimating reliability of components. Voas examined a method

to determine the quality of Off-the-Shelf components using black box analysis. His certification technique is

based on black box testing and fault injection methods[Voas+98].

Everett [Everett99] identified some guideline in estimating the component reliability by identifying the

component's static and dynamic properties and characterizing how usage stresses each component. Towards

a discipline of trusted commercial software components with high reliability, Meyer et.al. [Meyer+98]

discussed general principles for establishing trust in components, which include design by contract, formal

verification, extensive testing, and component-based software metrics.

����� 7UDQVLWLRQ 5HOLDELOLW\ �57LM�

The reliability of a transition from one component execution to another is the probability that the

information is correctly delivered from the source component to the destination in the course of execution.

There are two constituents for evaluating transition reliability: Component Interfaces Reliability and Link

Reliabilities. Thus,   RTij = Interface Reliability X Link Reliability

In this paper, we don't describe how to calculate transition reliabilities, however we are more concerned with

incorporating them as first class element in the model such that their effect on application reliability could be

analyzed. In the following we briefly describe factors affecting interface and link reliabilities.

1)  Component Interface Reliability

This is defined as the probability that two interacting components will have matching interfaces. A

component interface defines how it interacts with other components. Interfaces describe the import and

export relationship with other components. A set of exported interfaces specifies the functionality that this

component can provide. A set of imported interfaces specifies the functionalities that this component

requires from other external components which is needed in the work progress of the component execution.

A mismatch in an interface can be as a result of:

x Incompatibility in the structure and sequence of messages exchanged between components.

x Timing issues as related to requests coming in/from a component
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x Incompatibilities in data format and types and incompatibilities in message protocols (sync/ Async/

Publish and Read / ,… )

x Incompatibility in a component role in an interaction.  The role should define which component is the

client or server. Client/Server relationship is defined by the import/export interface specifications.

Formal specification of component interfaces is an approach to improve their reliability. Interface reliability

is a topic of several literatures, for example [Delamaro+96, Voas+96]. Here, we are more concerned with

how to incorporate them in reliability analysis of component-based applications.

2)    Link Reliability

Reliability of a link (also refered to as a delivery channel) is the probability of correct delivery of messages

exchanged between distributed components. This factor is essential in the case of components distribution

across a network. Heimdahl et.al. [Heimdahl+98] showed that almost 35% of errors were related to interface

mismatches between components and their underlying environment which includes communication

channels. In addition to component interface mismatches, distribution across a network adds more factors

affecting link reliabilities. A message exchanged between component in a distributed environment is

exposed to operating system calls, the underlying hardware technology, communication subsystems, and the

physical network itself. This adds new sources of failures and risks as related to (for example):

x Failure to detect and respond to operating system and communication event

x Physical network problems such as delays, congestion, physical failures, and liveness constraint on a

communication link.

x Incompatibilities in timing and protocols between sending and receiving sides.

Studying factors affecting link reliabilities is outside the scope of this paper, however, we incorporate this

parameter in the reliability model and in the reliability analysis algorithm.

����� $YHUDJH ([HFXWLRQ 7LPH RI WKH DSSOLFDWLRQ �$(DSSO�

The average execution time of the application (AEappl) is given by:

where:

PSk : is the probability of execution of scenario Sk ,

S: Total number of scenarios,

Time(Sk) is the average execution time of scenario Sk

����� $YHUDJH ([HFXWLRQ 7LPH RI D &RPSRQHQW �$(FL�

The parameter AEci is the average execution time in which a component Ci is active and running. It is

calculated using the equation:

¦
 

u 
S

1k

kkappl )Time(SPSAE Eq 2
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where:

PSk : is the probability of execution of scenario Sk ,

S: Total number of scenarios,

Time(Ci) is the execution time of Ci , measured as the sum of its active time along its lifeline (vertical
rectangles as represented in the scenario diagram),  and

Ci is said to belong to Sk if it participates in the execution of scenario Sk

����� 7UDQVLWLRQ 3UREDELOLW\ �37LM�

The parameter PTij is the probability of transition from one component to another. It is estimated using the

number of interactions between two components in the analysis scenarios. PTij is calculated as follows:

where:

S : Number of scenarios,

PSk : is the probability of execution of scenario Sk ,

N : number of components in the application,and

|Interact(Ci,Cj)| : is the number of times Ci interacts with Cj  in a given scenario.

The sum of transition probabilities from any component should be unity:

4.2 CDG  Construction

In this phase, the component dependency graph is constructed using the parameters evaluated in the previous

section. The following steps outlines the process of constructing the CDG graph:

x Using the application analysis scenarios, estimate the probability of execution of each scenario (PSi) by

estimating the frequency of execution of each scenario relative to all other scenarios. (Section 4.1.1)

x Estimate the reliability of components (RCi) and interfaces (RTij)  (outside the scope of this paper, see

Sections 4.1.2 and  4.1.3)

x Calculate the average execution time for a run of the application AEappl using the average execution time

of a scenario, the probability of execution of a scenario and Eq 2 Section 4.1.4

x For each scenario, calculate the execution time of each component (from the timeline of the sequence

diagram) and the transition probability from one component to another.

x Calculate the average execution time of each component (AEci) using the execution time of a component

in each scenario, the probability of a scenario, and Eq 3 Section 4.1.5

kji
li Nl
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S

k SCCCCInteract

CCInteract
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x Calculate the transition probability from one component to another for all scenarios (PTij) using the

probability of a scenario, the transition probabilities between components in each scenario, and Eq 4

Section 4.1.6).

x Construct the CDG according to the definition in Section 3

4.3 Reliability Analysis

After constructing the model (the component-dependency graph), we can analyze the reliability of the

application as function of reliability of components and transitions as follows.

Algorithm
Procedure SBRE
Parameters

consumes  CDG, AEappl,
produces  Rappl

Initialization:
Rappl = 0, Time = 0, Rtemp = 1

Algorithm
push tuple <C1, RC1, AEc1 >, Time, Rtemp

while Stack not EMPTY do
pop < Ci, RCi , AEci >, Time, Rtemp

if Time > AEappl  or Ci = t (terminating node)
Rappl += Rtemp (OR path)

else
� < Cj ,RCj , AEcj > � children(Ci)
push (<Cj, RCj  ,AEcj>, Time += AEci ,  Rtemp = Rtemp*RCi*RTij *PTij )

end
end while

The algorithm simply expands all branches of the CDG starting from the start node. The width expansions of

the tree represent logical "OR" paths and are hence translated to summation of reliabilities.  The depth of

each path represents the consecutive execution of components, the logical "AND" and is hence translated to

multiplication of reliabilities. The "AND" paths take into consideration the interface and link reliabilities

(RTij) between components. The depth expansion of a path terminates when the summation of execution

time of that thread sums to the average execution time of the application or when the next node is a

terminating node.

Due to the probabilistic nature of the dependency graph, several loops might exist. In calculating the

reliability of the application using the SBRE algorithm outlined above, the algorithm may loop between two

or more components. However, these loops don't lead to a deadlock by virtue of using the average execution

time of the application to terminate the depth traversal of the graph. Therefore, deadlocks are not possible in

executing the algorithm and a termination of the algorithm execution is evident.
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The reliability of an "AND" path is neither too pessimistic nor too optimistic. This is because the path is

either truncated with a termination node, a natural end of an application execution, or with an execution time

limit which is the average execution time of a scenario.

The algorithm assumes that each component is wrapped such that failures in one component do not

propagate[Khoshgoftaar+99] to another component in the "AND" path and hence independent assumption

could be valid.

5 Case Study

In this section we illustrate the applicability of the proposed technique to a simple component-based

application. The application was developed for simulation of waiting queues1 in which we deal with

customers lining up at checkout counters at supermarkets, immigration posts, or self-serve car wash. The

application is built by composing software components. Those components were developed as a part of an

educational experiment in software reuse at West Virginia University [Yacoub+99]. In this experiment, a

domain specific library of components was developed for the purpose of producing applications that

simulate the behavior of waiting queues.  Domain engineering activities were conducted to develop reusable

software components. The domain was defined by a set of software components, a generic architecture for

communicating components, and a set of possible execution scenarios.

For the purpose of this paper, we limit our discussion to one application developed from those reusable

assets, the checkout counter. First, we briefly describe the system architecture and its constituting

components, then we construct the component dependency graph (CDG).  Based on the application's CDG

(proposed in Section 3), we use the SBRE algorithm (proposed in Section 4) to investigate the reliability of

the application based on the reliability of its components and the reliability of components interfaces and

links.

5.1 The Architecture

Figure 3 describes the architecture of the application using the UML package diagram [UML99]. The

architecture of the application is centered around a dynamic event list as the communication vehicle of

events between cooperating components.  In addition to the EventList component , the primary components

in the architecture are ArrivalGen, a QueuingFacility, a ServiceFacility, a Measurement recorder, and a

ScheduleManager.  Those components are implemented in an object-oriented (OO) language. The

communication between components (invocations) follows the form of method calls. Some of these

components could have several classes and others have just one class.

                                                     

1  "Simulation of Waiting Queues" is our case study i.e. the application whose reliability is to be analyzed. This should not be confused with the
simulation technique for reliability estimation in [Gokhale+98b]
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Figure 3  The Application Architecture

The EventList component serves as the holder of all events.  The analysis identified a set of six events that

depict all scenarios necessary for the execution of the application. Events are maintained in the EventList and

are sorted in a time-ordered fashion.  Each event triggers a specific execution scenario.

The ArrivalGen component was designed to use a distribution function to generate the time of arrival of the

next customer. The distribution function determines the time of the next customer arrival, in our case study

we used uniformly distributed random generator. ArrivalGen component is invoked by ScheduleManager

component to generate customer arrivals.

The QueuingFacility component consists of a set of queue categories, where each queue category contains

one or more queues. This component contains three OO classes representing the facility interface, categories,

and queues. Events that indicate an action for a queue category or a queue are delegated to the queue facility,

which delegates the action to the appropriate queue category. For our case study, we used two categories for

checkout counters, Normal and Express, and one queue for each category. The QueuingFacility component

processes the events: REORDER, ARRIVAL, and DEQUEUE

The ServiceFacility component consists of a set of server categories, where each server category contains

one or more servers. This component contains three OO classes representing the facility interface, categories

and servers.  The servers are also identified by sequentially generated numbers, and each server contains the

identification number of its associated queue. Events that indicate an action for a service category or a server

are delegated to the ServiceFacility, which delegates the action to the appropriate service category.  For our

case study, we used two categories, Normal and Express, and one server for each category. The

ServiceFacility component processes the event SERVE, SERVICE_COMPLETE, and CHECK_SERVER.

The Measurement component hosts the statistical information each time a customer object completes its

number of service units.  This information is maintained by the Measurement component until the

ServiceFacility

QueuingFacilitySchedule
Manager

SERVE,
SERVICE COMPLETE,
CHECK SERVER

ARRIVAL,
REORDER
DEQUEUE

SERVICE COMPLETE,
REORDER,
DEQUEUE,
ARRIVAL

EventListARRIVAL

Read Events

SERVE
CHECK SERVER

Measurement
StoreResults

Read Results

ArrivalGenerator

Generate a new event
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completion of the simulation.  At the end of the simulation, the Measurement component calculates the

averages and totals.

The ScheduleManager component serves as the main routine for the simulation. It repeatedly dispatches

events from the event list and delegates actions based on the event type. The ScheduleManager activates the

number and type of queue and server components that are specific to the application, and then repeatedly

removes the first event from the EventList and dispatches it to the appropriate component.

5.2 Scenarios

The interaction between components in the application is analyzed using six execution scenarios. Each

scenario is triggered by an event. The following summarizes the analysis scenarios (sequence diagram for all

scenarios are shown in Appendix A):

x ARRIVAL: This scenario describes the sequence of actions taken by components to process the arrival

of a new customer to the queuing facility.

x REORDER: This scenario is executed when it is required to reorder the customer in the queue category

when a queue is empty and could carry customers from a busy queue.

x DEQUEUE: This scenario is executed when a server is ready to serve a customer from its waiting queue.

x SERVE: This scenario is executed when a customer is de-queued and needs to be served.

x SERVICE_COMPLETE: This scenario is executed whenever a customer finishes its service at a station.

x CHECK_SERVER: This scenario is executed to check whether a server is available to serve a customer.

5.3 The Component Dependency Graph

Calculating PSi

Based on the execution profile of the application, the probabilities of execution of the six scenarios are lists

in table (1). These probabilities are calculated based on the several execution runs for the application and

averaging the number of execution of each scenario.

Calculating RCi and RTij

We will not estimate the reliability of the components and transitions, however we will use these two

parameters to discuss the sensitivity of the application reliability to the variations in the reliability of

components and transitions as shown later.

Calculating AEappl

The average execution time of the application (based on the execution of one scenario) is calculated using

the average execution time of each scenario and the probability of execution of a scenario. Using Eq 2 in

Section 4.1.4,then, AEappl = 23.5
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Scenario Name Probability of a Scenario
(PSi)

Average Execution Time of a
Scenario Time(Sk))

ARRIVAL 0.145 41.43
SERVE 0.145 34.46
DEQUEUE 0.28 14.02
SERVICE_COMPLETE 0.145 31.93
CHECK_SERVER 0.14 20.83
REORDER 0.145  6.06

Table 1 Average Execution Time of a Scenario

Calculating AEci
The average execution time of each component is calculated using Eq 3 Section 4.1.5, the probability of

execution of each scenario, and the execution time of a component for that scenario.  Table 2 lists the

average execution time of each component.

Component Name Average Execution Time of a component AEcI

ArrivalGen 2
ScheduleManager 5
ServiceFacility 7
QueuingFacility 5
EventList 14
Measurement 0.8

Table 2 Average Execution Time of each Component

Calculating  PTij
Using analysis scenarios (Appendix A), the probability of execution of each scenario Table 1 and Eq 4 in

Section 4.1.6, then the transition probabilities PTij are calculated and shown in Figure 4. Using the parameter

calculated from the previous subsection, and the CDG tuplet definitions of Section 3, we construct the CDG

shown in Figure 4.

Figure 4 CDG of the application2

                                                     
2 Transition names are omitted from the transition tuplets
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5.4 Applying the SBRE Algorithm

We have implemented the SBRE algorithm defined in Section 4, and applied it to the CDG of the application

(Figure 4).  Our objective is to analyze the sensitivity of the application reliability as a function of the

components reliabilities and transitions reliabilities (interfaces and links) for a period of average scenario

execution time. We also discuss how different usage scenarios affect the application reliability.

����� 5HOLDELOLW\ RI WKH DSSOLFDWLRQ DV IXQFWLRQ RI &RPSRQHQW 5HOLDELOLW\

Using the SBRE algorithm we are able to investigate the variation in the reliability of the application as a

function of the reliability of individual components.  The graph in Figure 5 shows the reliability of the

application as function of the reliability of one component at a time while the reliability of other components

are fixed (equal to 1 for the sake of comparison).

Figure 5 Application Reliability as function of Component Reliabilities (one at a time)

Table (3) is the tabular representation of the graph in Figure 5. The first column is the reliability values of a

component. Each of the following columns shows the reliability of the application when reliability of the

component between brackets varies according to the first column.

Component
Reliability

Rappl

(Measurement)
Rappl

(ArrivalGen)
Rappl

(ServiceFacility)
Rappl

(QueuingFacility)
Rappl

(EventList)
Rappl

(ScheduleManager)
0.9 0.999 0.993 0.956 0.951 0.917 0.850
0.8 0.998 0.985 0.913 0.903 0.838 0.712
0.7 0.997 0.978 0.870 0.855 0.761 0.585
0.6 0.996 0.971 0.827 0.808 0.687 0.470
0.5 0.995 0.964 0.785 0.762 0.617 0.365
0.4 0.994 0.957 0.743 0.717 0.549 0.271
0.3 0.993 0.950 0.702 0.672 0.485 0.188
0.2 0.993 0.943 0.661 0.629 0.423 0.115
0.1 0.992 0.937 0.620 0.586 0.365 0.053

Table 3 Tabular Representation of Figure 5
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 Using the SBRE algorithm we are able to investigate the variation in the reliability of the application as a

function of the reliability of the transition (interfaces and links) between components.  The following graph

shows the reliability of the application as function of the reliability of some transitions one at a time while

the reliability of other components and transitions are fixed (equal 1 for the sake of comparison).

Figure 6  Application Reliability as function of transition  reliabilities (one at a time)

Table (4) is the tabular representation of the graph in Figure 6. The first column represents transition

reliabilities. Each of the following columns shows the reliability of the application when reliability of the

transition between the two components between brackets varies according to the first column.

Transition
Reliability

Rappl

(Measurement,
ServiceFacility)

Rappl

(ServiceFacility,
ScheduleManager)

Rappl

(EventList
,ServiceFacility)

Rappl

(ScheduleManager,
ServiceFacility)

Rappl

(EventList,
ScheduleManager)

Rappl

(ScheduleManager,
EventList)

0.9 0.999 0.992 0.982 0.967 0.953 0.928
0.8 0.998 0.984 0.964 0.934 0.907 0.858
0.7 0.997 0.977 0.946 0.901 0.862 0.791
0.6 0.996 0.969 0.928 0.868 0.819 0.728
0.5 0.995 0.961 0.910 0.836 0.778 0.667
0.4 0.994 0.953 0.891 0.803 0.738 0.609
0.3 0.993 0.946 0.873 0.771 0.699 0.554
0.2 0.993 0.938 0.855 0.740 0.662 0.502
0.1 0.992 0.931 0.837 0.708 0.626 0.453

Table 4 Tabular Representation of Figure 6
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Software components are developed as reusable assets for multiple usage in applications development. Each

application may use the components in a similar or different operational environment. The disparity in the

manner the application uses a component has a substantial effect on the sensitivity of the application

reliability to changes in the reliability of that component. Our model accounts for changes in component

usage using probability of each scenario (PSi in Section 4.1.1). We will refer to the set of probabilities of

scenarios for an application as a Profile. For our case study, the usage of the components will differ from

one application to another, e.g supermarket, immigration posts, car wash service, ..etc. and is also function

of the inter-arrival time of customer and the limits on maximum service time requested.  For illustration

purposes, we will consider four cases only. These cases were generated by varying the maximum requested

service time and the maximum limit on the period between customers inter-arrival time.  The Profiles for the

four cases is shown in Table 5.

ARRIVAL SERVE DEQUEUE SERVICE_COMPLETE CHECK_SERVER REORDER

Profile1 0.950 0.011 0.011 0.011 0.006 0.011

Profile2 0.704 0.073 0.075 0.072 0.003 0.073

Profile3 0.553 0.107 0.115 0.107 0.011 0.107

Profile4 0.145 0.145 0.28 0.145 0.14 0.145

Table 5  Probabilities of each scenario for four different usage profiles

We can analyze the reliability of the application as function of the reliability of each component for different

usage (Profiles). We have selected the three components EventList, QueueFacility and ServiceFacility. The

reliability of the application as function of the reliability of each of those component is plotted in Figure 7.

For each graph, we have plotted the sensitivity of the application reliability to the component reliability for

the four profiles of Table 5.

Figure 7 Application reliaiblity as function of scenario profiles

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Reliability of QueueFacility

R
el

ia
bi

lit
y 

of
 th

e 
A

pp
lic

at
io

n

Prof ile1

Prof ile2

Prof ile3

Prof ile4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Reliability of ServiceFacility

R
el

ia
bi

lit
y 

of
 th

e 
A

pp
lic

at
io

n

Profile1

Profile2

Profile3

Profile4

(a) (b) (c)



19

5.5 Results

x From Figure 5, the application reliability varies significantly with the variation in the reliability of the

components ScheduleManager and EventList. As the reliability of those component decreases the

application reliability dramatically decreases.  This is due to the fact that those two components are the

heart of the simulation application and therefore any faults in those components will easily propagate

and affect the correct operation of the application.

x From Figure 5, the reliability of the application doesn't vary significantly with the variation in the

reliability of the Measurement component. This is due to the nature of that component which is

recording of simulation results and is only invoked few times in recording and retrieving statistics.

x From Figure 6, the transition reliability between components can significantly affect the reliability of the

application. For example, the interface and/or link between the ScheduleManager and EventList

components can significantly deteriorate the reliability of the overall application if there are mismatches

or error in data flow between those components.

x From Figure 7, the senestivity of the application reliability to changes in the component reliabilities

varies according to usage of components.  For example, the application reliability becomes more

sensitive to the reliability of the components EventList and QueueFacility for Profile1 than the case for

Profiles2, Profile3, and Profile4 (Figure 7-a, 7-b). On the contrary, the application reliability becomes

less sensitive to the reliability of the component ServiceFacility for Profile1 than it is for Profiles2,

Profile3, and Profile4 (Figure 7-c)

6 Related Work

Several reliability models and estimation techniques have been proposed to assess the reliability of software-

intensive systems. In the sequel we are concerned with those addressing component-based applications3.

Gokhale et.al. [Gokhale+98b] discussed the flexibility offered by discrete-event simulation to analyze

component-based applications. Their approach relies on random generation of faults in components using a

programmatic procedure that returns the inter-failure arrival time of a given component. Total number of

failures is calculated for the application under simulation and its reliability is estimated. This approach

assumes the existence of control flow graph (component reliability and transitions) of a program, and did not

specify the basis for calculating transition probabilities. The simulation approach assumes failure and repair

rates for components and uses them to generate failures in executing the application. It also assumes constant

execution time per component interaction and ignores failures in component interface and links (transition

                                                     
3
 Discussion on the applicability of traditional reliability estimation techniques to component-based software and their limitations is beyond the scope

of this paper.
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reliabilities). Our proposed technique is analytical, not simulation based. We develop a probabilistic model

(component dependency graphs) using execution scenarios. We use scenarios to drive the average execution

times of applications and components. Our CDG also incorporates execution times, interface and link

reliabilities. Our implementation of SBRE algorithm takes a CDG as an input and doesnot require simulation

to study the effect of component reliability growth.

The work in [Sanyal+97] introduces the usage of Program Dependency Graphs (PDG) and Fault Propagation

Analysis (PGA) [Shah+97, Voas97] for analytical reliability estimation of component based-applications.

Their approach is a code-based (reverse-engineering) approach, in which dependency graphs are generated

from source code; this is not usually available for components and component-based systems. The authors

did not emphasize on how to evaluate the parameters used in their graph (the event and branch probabilities).

Their approach is applicable at lower development level, here we propose an approach applicable at higher

development level. Their approach also suggests a random mechanism for solving deadlocks due to loops,

our algorithm doesn't suffer from loop problems.

The approach in [Krishnamurthy+97] assesses the reliability of component-based applications using

reliability of their components, they proposed a technique called Component Based Reliability Estimation

(CBRE). Their approach is based on test information and test cases. For each test case, the execution path is

identified, the path reliability is calculated using the reliability of the components assuming a series

connection (using the independent failure assumption and perfect interfaces between components). The

reliability of the application is the average estimate of the reliability of each test path. This approach does

not consider component interface-errors although they are considerable factors in reliability analysis of

component based software. Estimating reliability based on test cases is not the same as using analysis

scenarios. Test cases don't take into consideration the frequency of interaction between components. Our

approach doesn't use test cases. Instead, we use analysis scenarios to derive a probabilistic dependency graph

which is used to analyze the sensitivity of application reliability to component reliabilities, transitions

reliabilities, and usage scenarios. We take into account the component interface reliabilities and link

reliabilities to incorporate the case of distributed components.

To apply models used in hardware reliability analysis to component-based software, the research group at

university of Toronto [Mason+98, Woit+98] proposed following certain discipline in software component

development and a set of design and interaction rules to minimize the interaction and dependability issues

between component. The proposed rules would facilitate modeling the component based system in Markov

chains and hence can apply the same reliability analysis techniques as in hardware cases. However, such

disciplines are difficult to impose and practice by the component developer and vendors.

Most of these approaches can be considered as path-based approach to reliability estimation of component

based software. The work in [Gokhale+98] proposed a solution to dependencies among components in path-

based techniques, which usually gives a pessimistic evaluation of the system reliability. The solution takes
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into account time-dependent representation of the reliability of a component and a fixed execution time per

interaction. Our approach solves the dependency in a more simplistic way using the average execution time

of the application, and that of a component, based on analysis scenarios.

Everett [Everett99] described an approach to analyzing software reliability using component analysis. The

approach uses the Extended Execution Time (EET) reliability growth model and uses test cases to arrive at a

composite reliability growth model for the testing period. Our approach shares the same benefits of early

reliability analysis of component-based applications prior to detailed implementation. Our CDG model and

SBRE algorithm integrates into the "superimpose component reliability" step in Everett framework. Our

approach is scenario-based and incorporate interface and link reliabilities which were not considered by

Everett.

7 Conclusion

This paper presents a new technique to analyze the reliability of component-based applications. The

algorithm is named Scenario-Based Reliability Estimation (SBRE). The technique is suitable for applications

whose analysis is based on valid scenarios with timed sequence diagrams and the execution profile of those

scenarios are available. Component Dependency Graphs (CDG) are derived to establish a probabilistic

model on which the reliability estimation technique is based. A stack-based algorithm is discussed to analyze

the reliability of component-based applications. A simple case study for "simulation of waiting queues" is

used to illustrate the applicability of the approach. This case study, being simple enough for illustration

purposes, clearly shows that SBRE algorithm can be used to discuss the sensitivity of the application

reliability to component reliabilities, interface reliabilities, and usage scenarios. Results of applying the

algorithm can clearly identify critical component and critical component interfaces and links that would

require intensive testing and validation. We can summarize the benefits and limitations of the approach as

follows:

Benefits

x The approach is based on scenarios, execution times, and components usage. A fault in a frequently

executed component would easily manifest itself into a failure. Using our CDG model, we incorporate

the effect of frequently executed components, interfaces, and links and hence we can dedicate more

testing and development effort to those critical artifacts.

x The algorithm is applicable early at the development phase of a component-based software because they

are based in scenarios between reusable components.

x The SBRE algorithm is automatable. We have implemented the algorithm and used the implementation

in our case study. Automating the calculation of the parameters from a sequence diagrams is a

straightforward task.
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x Using scenarios to derive the model allows us to incorporate differences in the usage of a component in

reliability analysis of component-based software. Applications using the same component, but with

different usage scenarios, will have different sensitivity to the reliability of that particular component.

Limitations

x The nature of the application: The approach is applicable to component-based application which are

analyzed using execution scenarios.

x The algorithm does not consider failure dependencies between components.

x The algorithm is applicable for sensitivity analysis of application reliability to component and interface

reliability in a given period of execution, a scenario average execution time. Currently, the algorithm

does not consider the overall application reliability growth as function of time. However, using the

reliability growth of individual components, we can periodically conduct sensitivity analysis for the

application reliability.

Future work

x Extend the applicability the algorithm and the CDG model to complex systems which are hierarchical in

nature. The extension will incorporate subsystem concepts and hence the CDG will have to be extended

to include root and leaf nodes.

x Extend the model to consider the effect of intra-component dependency.

x Extend the model to account for the criticality and complexity of a component or a scenario. Some

scenarios could be more critical than others but they are seldomely executed. The model should be able

to consider the reliability sensitivity to those particular scenarios.
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Appendix A: Analysis Scenarios for the Example

CHECK_SERVER Scenario
ARRIVAL Scenario

SERVE Scenario

TheEventList :

EventList

ScheduleManager :

Driver

AServiceFacility : Service_

Facility

SelectedCat : Service

Category

AServer : Server

Dispatch( )

Serve(Customer&,CurrentTime,ServerID,Category)

Schedule(SERVICE_COMPLET

SelectServer

Serve(Customer&,CurrentTime,ServerID)

Serve(Customer&, Time)

SelectCategory

Schedule(REORDER)

Case:

SERVE

CalculateServiceCompleteTime

SERVICE_COMPLETE Scenario

TheEventList :
EventList

ScheduleManager :
Driver

A_Facility :
Service_Facility

SelectedCat :
ServiceCategory

SelectedServer
: Server

TheMeasurements
: Measurements

Dispatch( )

ServiceComplete(CurrentTime,ServerID,Category)

SelectCategory

ServiceComplete(CurrentTime,ServerID)

ServiceComplete(CurrentTime)

Schedule(DEACTIVATE )

EndService( )

Yes

Yes

Case: SERVICE_

COMPLETE

SelectServer

Is ServiceTime > Maximum

Schedule(ARRIVAL)

No AccumlateStatistics

No

Schedule(DEQUEUE )

REORDER Scenario

ScheduleManager :
Driver

TheQueuingFacility
: QueuingSystem

SelectedCategory :
QueuingCategory

TheEventList :
EventList

REORDER Dispatch( )

ReorderCategory(CategoryID)

Reorder( )

SelectCategory

Reordable?

Yes? Reorder()

Case:
REORDER

TheEventList :
EventList

Schedule
Manager

TheQueuingFacility :
QueuingSystem

AQueueCategory :
QueuingCategory

AQueue :
Queue

Dispatch( ) Case:
DEQUEUE

Dequeue(CategoryID,FromQueueID,CurrentTime, ServerID)

SelectCategory

Dequeued = Dequeue(QueueID,Customer&)

SelectedQueue

Dequeue(Customer&)

If Dequeued = True
Schedule(SERVE )

DEQUEUE Scenario

TheEventList : Event
List

ScheduleManager:
Driver

AServiceFacility : Service_
Facility

AServiceCategory : Service
Category

Case: CHECK_
SERVERDispatch( )

CheckServer(CurrentTime,QueueID,Categories)

SelectCategory

CheckServer(CurrentTime,FromQueueID)

SelectServer

If ServerBusy = False

Schedule(Dequeue )

ServiceFacility

Schedule
Manager

AQueuingFacility :
QueuingSystem

SelectedCat :
QueuingCategory

SelectedQueue : :
QueueArrivalGenerator :

ArrivalGen

TheEventList :

EventList

ProcessArrival(Customer&,CurrentTime)
SelectCategory

Enqueue(Customer&, CurrenTime)

Enqueue(Customer&)

Dispatch

LengthOf( )

Yes

Case:

SelectQueue

GenerateNextArrivals(CurrentTime, Customer&)

Schedule(ARRIVAL )

If Length == 1

Schedule(CHECK_SERVER )

QueuingFacility

ServiceFacility

ServiceFacility

QueuingFacility
QueuingFacility
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Appendix B Fault Propagation Analysis (FPA)

The probabilistic model constructed in Section 3 as a component dependency graph establishes the basis of

probabilistic study of fault propagation in an application developed from components. Fault propagation

analysis is useful in component based applications because:

x It facilitates studying the effect of a defective component on other components in the application and

possible on the output of the application as a whole.

x The study of adding, replacing, or modifying a component becomes more feasible from a single model

(the component dependency graph).

The algorithm of Section 4.3 is modified to allow fault propagation analysis from a source node to a

destination. The objective of the modified algorithm is to estimate the probability that a destination

component "D" is affected by a fault in the source component "S". The probability of fault propagation is

called Fault Propagation Probability (FPP). The algorithm is named Scenario Based Fault Propagation

Analysis (SB_FPA). The algorithm is limited to single failure propagation and no loops include the source

node.

Procedure SB_FPA
Parameters

consumes  CDG, AEappl, S, D
produces  FPP

Initialization:
FPP = 0, Time = 0, FPPtemp = (1-Rs)

Algorithm
push tuple <S, Rs, AEs >, Time, FPPtemp

while Stack not EMPTY do
pop < Ci, RCi , AEci >, Time, FPPtemp

if Time < AEappl

if Cj = D
FPP += FPPtemp

else
� < Cj ,RCj , AEcj > � children(Ci)
FPPtemp = FPPtemp*PTij *RCj*RTij ###

push (<Cj, RCj  ,AEcj>, Time += AEci , FPPtemp)
end

end
end while

###  The algorithm assumes a single fault at a time.


