
design patterns, real-time software
software architecture

Janusz ZALEWSKI

REAL-TIME SOFTWARE DESIGN PATTERNS

The objective of this paper is to provide a road map to understanding and use of real-time design
patterns. To meet this objective, we provide a brief overview of the origins of design patterns, then discuss a
wide variety of specific real-time design patterns, and finally provide our own classification of patterns,
which is derived from a systematic approach to real-time system design and real -time software architectures.

1. INTRODUCTION

Real-time systems are computer systems with bounded response time. They
concern applications in a variety of areas, from microwave ovens, washing machines and
cash registers, through automotive electronics, traffic lights and railways, through
systems as complicated as missile guidance, air traffic control and airline reservations.
Their primary characteristic is timing dependence, which usually translates into a
necessity of completing urgent jobs by certain, well defined deadlines. If missing a
deadline is critical and cannot be tolerated, then a system is called hard real-time system,
otherwise it is called soft real-time. Many hard real-time systems are also safety critical,
which means that their failure, such as inability to deliver the results of computations on
time, will cause severe material losses.

With the extensive use of digital computers for that kind of applications, software
is a mandatory technology to provide the required functionality and plays an increasingly
important role in system operation. As far as the level of complexity of software-
intensive systems continuously increases, methods to design software-based controllers
do not keep pace with this progress. Engineers still use traditional software design
methodologies, which are based on structured design paradigms developed for real-time
systems in the past decades. These methodologies do no longer meet the needs of
designers of modern real-time systems, due to the limitations of their notations,
inadequacy of design techniques, and lack of appropriate automatic design tools to
facilitate the development process. This is due to the fact that most methodologies do not

address design at large or design with added complexity factor, where organizational and
architectural decisions are critical but difficult to formalize.

As indicated in [28], even for such a small system as the cruise control system for
a road vehicle to automatically maintain constant speed, there are a number of problems
with the typical solution using the traditional design methodology:
• little consideration is given to the system architecture to be employed, and the

consequences this will have for the rest of the design
• the control algorithm is being presented largely without comment, and does not use

any of the classical techniques, such as PD or PID
• no hint is given how the effectiveness of the chosen approach should be assessed.

When complexity increases, the support provided by conventional development
methods for designing such systems is not enough to be effective. Engineers face design
challenges that usually go well beyond the experience and capabilities of single humans.
One way to alleviate this type of problems, facing engineers designing software-intensive
real-time systems, is to apply design patterns within the existing methodologies [19].

A pattern is usually considered a model of software or, better, a template of
software to assist in the software development process. As such, it may refer to both the
software product itself and the software process. Its description can be rather informal,
since there are no good or widely accepted models of software of general applicability.
That way of approaching the construction process has been widely used in engineering
disciplines dealing with material objects, for example in civil engineering to construct
building, bridges, etc. (patterns as building blocks), in chemical engineering to design
chemical plants (patterns as unit operations), even in electrical and electronic engineering
to design electric/electronic devices (patterns as hardware modules, such as a power
generator or radio receiver).

Patterns have functioned as building blocks for complex systems for a long time.
Such term as a handshake, for example, has been used for years at different hardware
levels, such as the circuit level, bus level, network level, and is now being legitimately
used at various software levels.

Patterns are normally not invented. They summarize previous engineering
experience with solving typical problems and provide a way for applying reusability at
the design level. Since on one hand, domain engineers are not fully trained in software
development methodologies, and on the other hand, software engineers are not well
familiar with the nature of physical processes to be controlled, we can use such patterns
to record and reuse engineering knowledge in a form of software templates that serve as
building blocks. It can help both professions to deal with and facilitate software
development for real-time systems. But to be fully useful, these building blocks must
reach far beyond the traditional program modularization techniques we are all familiar
with, which rely on the use of subroutines, procedures and functions. Such patterns are
needed even at the basic design level, before one can implement any subroutines or
procedures in the code.

In this paper, we critically overview the state-of-the-art in the development and
use of real-time design patterns, and present some of our own related experiences in real-
time software design. The paper is structured as follows. Section 2 discusses previous
work on software design patterns, in general, and presents some of the patterns developed

specifically for real-time control systems. Section 3 presents our own view on the role of
real-time design patterns in the development process and outlines our experiences in
applying such patterns. Finally, Section 4 summarizes the paper and presents conclusions.

2. PREVIOUS WORK

2.1. DESIGN PATTERNS IN GENERAL

It is really hard to determine, who first came up with the idea of using the term
design patterns in computing or software engineering. Work on software design patterns
has been promoted mainly among software engineers and the classic book was published
in 1995 [10]. The whole concept can be traced back to the late eighties and a series of
workshops held at conferences on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA).

In this and other similar works, a pattern is understood as a solution to a problem
in a context. Patterns codify specific knowledge collected from experience in a domain.
Types of software patterns vary from idioms at the programming language level, to
frameworks for entire software systems. In this sense, at the intermediate level,
procedures, functions, and classes can be considered pattern-like entities as well. In other
words, patterns are repeatable units, building blocks.

Function

Data Methods

Data

Functional Aproach OO Approach

Figure 1. Relationship between Functional and Object-Oriented Approaches.

Gamma et al. [10] state that a design pattern names, abstracts, and identifies the
key aspects of a common design structure that make it useful for creating a reusable
object-oriented design. The nature of object-oriented design and its relationship to
traditional, structured design can be illustrated by considering the mutual roles of data
and operations, as shown in Figure 1.

The design pattern identifies the participating classes and instances, their roles
and collaborations, and the distribution of responsibilities. A set of cooperating classes
that make up a reusable design for a specific class of software is called a framework.
According to [10] pattern description should include:
• name (with aliases) and classification
• intent
• motivation
• applicability
• structure
• participants
• collaborations
• implementation
• sample code
• known uses
• related patterns.

Additionally, they categorize all software patterns into three groups:
• creational patterns (abstract factory, prototype), that concern the process of object

creation
• structural patterns (adapter, bridge, proxy), that deal with the composition of classes

and objects
• behavioral patterns (chain of responsibility, mediator, visitor), that characterize the

ways in which classes or objects interact and distribute responsibility.
Since patterns describe software abstractions, they apply to both the product and

process (that is, how to make a product). They are usually considered to be architectural
building blocks, described by the following characteristics, in addition to Name:
• Problem the pattern is trying to solve
• Context for which a pattern is designed
• Forces (trade-offs) that make clear the intricacies of the problem
• Solution, that describes the structure and behavior of a pattern
• Force Resolution, that describes a resulting context, which forces are unresolved,

what other patterns must be applied, and how context is changed by the pattern
• Design Rationale, which tells where the pattern came from, why it works, and why it

is used.
Buschmann [6] characterizes software patterns in a similar way: “A pattern for

software architecture defines a particular recurring design problem that arises in specific
design contexts, and presents a well-proven generic scheme for its solution.”

All this is important to understand software design patterns, especially in object-
oriented technologies, however, has very little to do with real-time systems or even with
software-controlled systems. The main problem is that all this knowledge has been

developed by software engineers, not real-time engineers, thus it contains very little, if
any, domain specific information. Therefore in the following section, we present a
review of known works on specific patterns related to real-time control technologies.

2.2. REAL-TIME DESIGN PATTERNS: AN OVERVIEW

Describing the use of real-time design patterns, we divide the available
information into three categories, regarding its source:
• industrial applications, which show some of the prac tical uses of design patterns in

real-time systems, mostly used for control
• tool vendors, who discuss software design patterns from the point of view of

automatic support for development, and
• academic perspective, which describes some of the research issues in identifying real-

time design patterns.
To include the most relevant patterns that may be related to real-time software

design, we focus in the discussion on design patterns used in control systems. This is
under the assumption that computer control systems are, in fact, real-time computing
systems [49], as a consequence of adopting the definition that a real-time system is “a
computer systems with bounded response time”.

2.2.1. INDUSTRIAL VIEW

Lea [21] was probably one of the first authors to write on a subject concerning
real-time design patterns. He discusses patterns related to the redesign of avionics control
systems. An Avionics Control System (ACS) is the main navigation system of an
aircraft, that continuously collects sensor information to estimate actual state of an
aircraft, computes desired aircraft position with respect to guidance modes, and performs
actions that advise pilots or directly manipulate the actuators to control the flight.

After presenting a general view of the ACS, which is primarily a black box
interacting with sensors, actuators (which are called effectors) and displays, general
system architecture is devised, composed of the following interacting models:
• navigation models, representing estimates of actual states
• objective models, representing desired states
• error models, representing those differences between actual and desired state that is

useful for directing flight
• action models, representing desired actuator and display settings suitable for

manipulating aircraft hardware
• intermediate models, used to provide lower-level representation of the four above

mentioned models.
Since no specific reference to design patters is made in the text, it is assumed that

models play the role of patterns in this paper. The description of models, however, does
not identify any specific patterns in terms of three categories of patterns (creational,
structural, or behavioral) or in terms of a particular descriptive features (as listed in

Section 2.1 above). However, design guidelines, in a form of design steps, are given to
build these models, which may be viewed as process patterns.

Rubel [31] authored another early paper related to real-time design patterns. He
used a model of mechanical control systems to present a series of, what he calls, patterns.
They are inserted during the design process, between the engineer and the equipment,
helping to automatize the control. He identifies and describes the following four patterns:
pedestal, bridge, symmetrical reuse, and elevate reference to enhance reuse. They are, in
fact, models of a hierarchical architecture of a control system, but have little to do with its
software architecture.

Berczuk [1, 2] describes a pattern language to guide development of a ground
based system that will process telemetry data from an earth-orbiting astronomical
observatory. He considers patterns as forms/regularities for describing architectural
constructs in a manner that emphasizes these constructs’ potential for reuse. They
provide a way to document and share design expertise in an application independent
fashion.

His papers focus on the process of classification and interpretation of the
telemetry data packets as received from the spacecraft, and dispatching the resulting data
objects for further processing. The patterns he is referring to are mostly at the
organizational, that is, process level. The following specific patterns have been
discussed:
• Loose Interfaces, which is mostly a suggestion for decoupling interfaces because of

physical distribution and loose connections among participating teams
• Parser/Builder, whose role is to decompose incoming packets into content-related

units
• Composite Factory, which is responsible for producing the decomposed packet units
• Handlers, whose role is to deliver the assembled data units to the destinations.
 A more contemporary approach to using design patterns in telemetry processing
is presented by Hermann et al. [14]. They follow the recommendations of the
Consultative Committee for Space Data Systems (CCSDS), which define the hierarchy of
the data flow for transmissions (and corresponding hierarchy for data reception), as
follows:
• create source packets from application date
• segmentation of source data packets
• insert telemetry packets into frames of appropriate virtual channels
• multiplex the frames of different virtual channels into a single sequence
• create pysical data channels.

Taking this hierarchy as a basis, telemetry packets and transfer frames are used as
basic data elements, for which specific classes, TranferFrameHandler and
TelemetryPacketHandler are designed. These classes, plus and ApplicationHandler class,
then form a skeleton of two patterns:
• abstract factory, for choosing and creating telemetry objects responsible for remote

sensing of particular satellite data, and
• facade, for encapsulating the telemetry standard functionality into a simple and

unified interface.

Respective class diagrams for the facade pattern are shown in Fig. 2.

DumpHandler

TPHandler
TMPHandler
APHandler

DumpHandler()
~DumpHandler()
ProcessDump

TFHandler

TMTF

TFHandler()
~TFHandler()
VirtChannelDemux()

TMPHandler

TMTF, TMP

TMPHandler()
~TMPHandler()
TelePackectExtract()

APHandler

TMP

APHandler()
~APHandler()
ExtraxctAppPackets()

Figure 2. Facade Pattern for Telemetry.

Molin and Ohlsson [24] describe a series of design patterns related to the

enhancement of microcontroller-based fire alarm systems. The key function of the
system is to detect, via a number of sensors, that something out of the ordinary occurs,
and generate an alarm. Generating an alarm involves activating alarm bells, posting
messages to text displays, invoking extinguishers, calling firefighters. Respective design
patterns are grouped into a hierarchy of the following: deviation, point and pool, periodic
object, lazy state, and data pump; thus they form a language of patterns for fire alarm
systems. The basic idea of a real-time system, based on the transformation of input
signals into corresponding outputs after processing, is illustrated in Fig. 3.

Dagermo and Knutsson [8] describe an object-oriented framework for a vessel
control system. In creating the framework they used the idea of design patterns from
[10]. They describe the patters that have adopted and used in this particular problem:
observer, singleton, proxy, and state patterns. For example, an observer pattern
establishes a one-to-many relationship among objects, to serve the purpose of notifying
all dependants when one object is changing state. A simple sequence diagram illustrating
the behavior of the observer pattern is shown in Fig. 4.

Input
Devices

Output
Devices

Deviation

Deviation

Input Points
Output Points

Figure 3. Transformation Scheme Leading to Deviation and Point Patterns.

aSubject anObserver anotherObserver

setState()

notify()

update()

update()

get State()

get State()

Figure 4. Sequence Diagram for the Observer Pattern.

There are many other published papers on applying design patterns to real-time

systems. More recently, Heverhagen and Tracht [15,16] discussed their use of patterns to
define a Function Block Adapter (FBA) as a stereotype in a Unified Modeling Language

(UML). Their objective is to integrate systems designed in UML Real-Time (UML-RT)
with existing PLC environments designed according to IEC Std 61499. Buschmann et al.
[6] present an outline, how the framework technology would help building software
architectures for process automation systems. As a case study, they use a framework for
hot rolling mills.

Several other papers are also worth noting, but cannot be summarized here due to
space limitations. Woodward [43] described briefly his experiences in using design
patterns to the simulation of an Airborne Early Warning (AEW) aircraft. Bottomley [3]
presents an approach to pattern development for autonomous embedded systems with
limited user interaction, variety of sensor inputs and control of a few outputs. Ihme [17]
presented a related approach on developing patterns for measurement and data
acquisition. Most recently, Tomura et al. [41, 42] described design patterns for use in
large-scale systems for distributed simulation, and Sharp [40] applied design patterns to
designing real-time software for avionics.

2.2.2 TOOL VENDORS PERSPECTIVE

Use of design patterns is the most effective, if they not only remain on paper, but
are also supported by automatic development tools. Such tools need to adhere to a certain
notational standard and allow developers to support software construction at various
stages of a lifecycle.

For real-time software development, the tool has to demonstrate real-time related
features, such as concurrency, responsiveness, etc. Universal Modeling Language (UML)
is such a standard being more and more accepted nowadays, especially with its emerging
Real-Time Profile (UML-RT). Several vendors, such as Rational, I-Logix, Artisan, and
others publish extensively on their views of supporting real-time software design using
UML, especially with design patterns [39].

Selic [37,38] presents an architectural pattern for real-time control software. It is
called Recursive Control pattern, and relies on separating the control part from the
functional part of the system (Fig. 5). It is designed to deal with what is traditionally
considered ancillary software functions, such as startup and shutdown, failure detection
and recovery, online maintenance, etc. Separation of control and service related functions
allows each to be modified independently.

The pattern is described in terms of structure, collaborations, applicability,
participants, consequences, and relationships to more basic patterns. Its behavior is
described using a state machine diagram. It is interesting to note that this pattern applies
the classical feedback control model, that is, separating the functional part from the
controller. It is applied to design software for alternating bit protol and to client/server
system.

Douglass [9] also defines a design pattern as a general solution to a commonly
occurring problem. A pattern has three parts: a problem context, a generalized approach
to a solution, and a set of consequences. Patterns are usually constructed by abstraction,
that is, extracting out the things from large set of specific instances. To him, patterns are

described involving classes interconnected via relations. He groups design patterns into
two major super-categories: architectural patterns, which are heavy-weight pieces related
to architectural decisions, and mechanistic design patterns, which are much smaller in
scope.

Internal
Control

Functional
Component

Functional
Component

Control Interface

Functional Interfaces

Figure 5. Recursive Pattern Structure.

In the architectural patterns group, he lists a large number of design patterns

divided into several categories:
• execution control (preemptive multitasking, cyclic executive, time slicing,

cooperative multitasking)
• communications (master -slave, time-division multiplexing, bus-mastered)
• distributed systems (proxy, broker, asymmetric multiprocessing, symmetric

multiprocessing, semi-symmetric multiprocessing)
• resource (static allocation, fixed size allocation, priority ceiling)
• safety and reliability (homogeneous redundancy, heterogeneous redundancy, sanity

check, monitor-actuator, watchdog, safety executive).
In the mechanistic patterns, he distinguishes among the following categories:

• simple pattern, such as observer, transaction, smart pointer
• reuse patterns, including container, interface, policy, and rendezvous,
• state behavior, inclusing state and state table.

Douglass uses a slightly extended UML notation to describe patterns. For
example, Fig. 6 presents the structure of a rendezvous pattern. Strictly speaking, even
though called real-time design patterns, very few of the patterns from Douglass report [9]
are related to real-time operation.

* * 1 1
Thread Lock

Rendezvous
Pattern

Rendezvous

Figure 6. Structure of a Rendezvous Pattern.

2.2.3 ACADEMIC VIEWS

There is only a handful of authors from academia, who write seriously on design
patterns for real-time systems.

The most systematic view of software design patterns for real-time systems has
been presented by Sanden, with the use of his entity-life modeling approach. He defines
a design pattern as a known solution for a problem, that is, an existing model of software.
In a series of papers [32, 33, 34], he discusses several design patterns suitable for use with
his entity-life modeling approach, for concurrent and real-time systems:
• shared-resource pattern
• assembly line pattern
• state-machine pattern.

User Tasks

Resource

Figure 7. Shared Resource Pattern.

In a shared resource pattern (Fig. 7), a thread represents each resource user. A
resource itself may be a non-executable entity’s data item or another executable entity,
such as a thread. In an assembly line pattern (Fig. 8), each thread represents a resource
and the data items, being operated upon, travel along the line of threads. It is a variation
of a pipe pattern but possibly with a resource to wait for, which is not the case for pipes.

Queues

Tasks

Figure 8. Assembly Line Pattern.

A state machine pattern, as presented by Sanden [32, 34], is a template for

handling state machines in real-time software. It is not just another representation of a
state machine (finite automaton), such as a state transition diagram, but involves such
representat ion as one of the structural elements of the pattern. Other elements form an
access layer to the automaton and include (Fig. 9): event captor, E, activities, C, and
passive interfaces, P. Sanden discusses two examples: an odometer and a weather buoy.

Eve
nt

s

 A
c

t
i

v
i

t
i

e
s

Automaton

Interfaces

Figure 9. Structure of a State-Machine Pattern.

Carvalho et al. [7], introduce a sensor-reactor design pattern to separate sensing

capabilities from reacting capabilities needed to return the system to a stable state. They
introduce an AbstractSensor and AbstractReactor classes that are superclasses of concrete
sensor and reactor models. Connecting sensor and reactor models is done via a Logic
class that incorporates all required computations.

Parikh et al. [26] discuss the use of design patterns for data fusion. They present
several versions of the classifier pattern for use in condition monitoring and fault

diagnosis of a diesel engine cooling system. They experimented with the following three
patterns:
• multi- layer perceptron classifier
• radial-basis-function classifier, and
• neuro-blackbord approach.

Nelson [25] presents a design pattern for control of autonomous or robotic
vehicles. It is a tri-level approach to vehicle control, calles STESCA (Strategic -Tactical-
Execution Software Control Architecture). At the highest, strategic, level mission
specification is expressed. This is converted at the tactical level into actual vehicle
component control commands. The lowest, execution, level interfaces the commands to
the individual vehicle components.

Graves and Czarnecki [13] discuss behavior-based patterns for robotics. In a
structural type of pattern description they focus on robot control architecture and identify
three kinds of patterns to distribute control functions between man and machine:
• traded control, in which responsibilities for producing behavior are traded between

man and machine,
• shared control, in which the functions are integrated, such that an operator is guiding

the robot to target, while collision avoidance is autonomous, and
• supervisory control, where the controller is preprogrammed to perform the entire

task, while an operator is overseeing the problems.
Gomaa and Farrukh [11] describe the way to map features of a distributed

application to a number of architectural patterns. An architectural pattern contains the
following information:
• declaration of component types
• declaration of other architectural patterns required by this pattern
• instantiation of components
• definition of interconnections between internal components
• definition of interconnections between this pattern and other included architectural

(prerequisite) patterns, including the kernel architectural pattern.
A case study of a flexible manufacturing system, composed of three patterns, the kernel
pattern, factory production pattern, and flexible manufacturing pattern, is analysed.

More patterns addressing some fundamental problems of concurrent computing
applied to real-time control systems can be found, for example, on distributed rendezvous
[18], deadlock avoidance [44] and client/server systems [12]. McKegney [22] reviewed
some issues of pattern application to real-time object-oriented software design and
postulated development of specialized tools [23]. Spectacular work has been done by
Schmidt and coworkers [36], in relation to distributed object-oriented systems, in many
aspects related to real-time systems. Pont [27] collected a large number of design
patterns for embedded systems and used them in a variety of applications [28, 29, 30].
Sanz et al. [35] presented the use of design patterns for intelligent control systems.

Even though Buschmann represents an industrial company, patterns he has
developed, a master-slave pattern [4] and real- time constraints as strategies [5], are so
fundamental that both qualify to be included in the academic view. Especially interesting
is the latter design pattern that decouples real-time specific constraints and behavior from

the application service to which they apply. The application service is provided by a
service class and real-time related aspects are delegated to strategies which implement
these in a specific manner.

3. AUTHOR’S APPROACH

 This author has advocated a top-down approach to designing real-time software,
which naturally leads to the formulation and application of design patterns. The
fundamental idea comes from the requirements view of the system under development
and relies on the fact that all real-time systems interact with their environment in four
basic ways, via [45]:
• process (plant) interface, involving measurement and control actions
• user interface, handling interaction with an operator
• communication link, taking care of controller’s interaction with other parts of a

control system via a communication network
• database interface, responsible for storing and retrieving data.

This is because all functional requirements on real-time software are normally
expressed in terms of input/output functions. If we assume that, in addition to that, every
real-time system includes a processing component and a timing component, a generic
architectural pattern is generated as shown in Fig. 10.

Proc

Meas

Ctrl DBase

Timer GUI

Comm

Figure 10. Architectural Pattern for Real-Time Software.

 Refining the architectural pattern from Fig. 10 leads us to different design
patterns depending on a specific real-time application. Several sophisticated real-time
applications have been developed for this architectural pattern, including those for
controlling elementary particle collider, satellites, and combat vehicles [20], as well as for
simpler applications, such as instrumentation software [46] or cruise control [50]. Other
applications are being developed, such as air-traffic control software and satellit e ground
control station.

It is important to note that the architecture from Fig. 10 does not imply the use of
any particular design methodology for further development, nor does it preclude the use
of any specific methodology for designing real-time software. In particular, traditional
structured design approaches for real-time software design can be successfully used, as
well as newer object-oriented methodologies can be applied. For example, software
components from Fig. 10 can be mapped onto traditional modules in a sequential
structured design, or onto concurrent tasks in a multitasking structured design. They can
be also mapped onto objects in an object-oriented design, or onto a mixture of modules,
tasks and objects in a hybrid design.

FSI TLM Dish Microdyne
Combiner

3200

Microdyne
Rx'er 1200

Internet Gateway

WorkstationWorkstation

DB Server

MUX/
DEMUX

Workstation

SGI Origin 2000

Workstation Workstation

Future
Expansion

IEEE 1394 Splitter

Bit Sync

VME Bus

Analog I/O
(AIO) Subsystem

Frontend
(FEP) Subsystem

Realtime Processing
(RTP) Subsystem

Figure 11. Satellite Ground Control Station Physical Diagram.

This architectural pattern can be also mapped onto a number of different
hardware architectures. In particular, the combination of modules can be run on a single
processor, but also, a family of concurrent tasks can be executed on a single processor or
on a multiprocessor system. Ultimately, a combination of objects can be distributed over
a network using a middleware technology, such as CORBA [20, 35]. It is important to
note that CORBA offers a good platform for pattern-based design for real-time software,
since patterns do naturally lead to component-based development.

An example of using this approach to develop software for a complicated
distributed real-time system involves satellite ground control station, whose physical
diagram is shown in Fig. 11. Following the architectural principle outlined in Fig. 10,
one can group all necessary components into those responsible for major functionalities:
GUI, Telemetry, Database, and GPS Timing. Respective real-time design patterns are
described both at the structural and behavioral level, using UML notation. Due to space
limitations we only present here a simple sequence diagram showing the behavior of the
GUI pattern (Fig. 12).

GUI

DB

GPS

sendTelemetry()

requestDB()

sendGPS()

sendDB()
 requestGPS()

requestTelemetry()

Telemetry

Figure 12. Sequence Diagram for a Simple GUI Pattern.

4. CONCLUSION

 As shown in the review of the most important works, the use of design patterns
for real-time applications is more and more common nowadays. Design patterns increase
software reusability and facilitate development by arming software developers with

knowledge encapsulated in patterns by domain experts. In this view, the author advocates
a specific approach to designing real-time software, which is based on treating real-time
systems as control systems. This approach naturally leads to the formulation of design
patterns in terms of handling particular interfaces with the external environment.
Applying patterns to real-time applications has several disadvantages, however, to name
only indeterminism introduced at the design level [47] and inadequate support by the
development tools [48].

REFERENCES

[1] BERCZUK S.P., A Pattern for Separating Assembly and Processing, Pattern Languages of Program

Design, J.O. Coplien and D. Schmidt (Eds.), Addison Wesley, Reading, Mass., 1995, pp. 521-528.

[2] BERCZUK S.P., Organizational Multiplexing: Patterns for Processing Satellite Telemetry with

Distributed Teams, Pattern Languages of Program Design 2, J.M. Vlissides, J.O. Coplien, N.L. Kert

(Eds.), Addison-Wesley, Reading, Mass., 1996, pp. 194-206.

[3] BOTTOMLEY M., A Pattern Language for Simple Embedded Systems. Proc. PLoP’99, 6th Annual

Pattern Languages of Programming Conference, Monticello, Ill., 15-18 August 1999.

[4] BUSCHMANN F., The Master-Slave Pattern, Pattern Languages of Program Design, J.O. Coplien

and D. Schmidt (Eds.), Addison Wesley, Reading, Mass., 1995, pp. 133-142.

[5] BUSCHMANN F., Real-Time Constraints as Strategies, Proc. EUROPLOP’98, Third European Conf.

on Pattern Languages of Programming and Computing, Bad Irsee, Germany, 9 - 11 July 1998.

[6] BUSCHMANN F. et al., Framework-Based Software Architectures for Process Automation Systems,

Annual Reviews in Control, 2000, Vol. 24, pp. 163-175.

[7] CARVALHO S., G. ROSSI, F. BALAGUER, Using Design Patterns in Real Time Applications,

Proc. WRTP’96, IFAC/IFIP Workshop on Real Time Programming, Gramado, Brazil, 4-6 Nov. 1996,

Elsevier, Oxford, pp. 93-96.

[8] DAGERMO P., J. KNUTSSON, Development of an Object-Oriented Framework for Vessel Control

System, Technical Report ESPRIT III/ESSI/DOVER #10496, Dover Consortium, Karlskrona,

Sweden, 1996.

[9] DOUGLASS B.P., Real-Time Design Patterns, iLogix Inc., Burlington, Mass., 2001,

http://www.ilogix.com/

[10] GAMMA E. et al., Design Patterns: Elements of Reusable Software Design, Addison-Wesley,

Reading, Mass., 1995.

[11] GOMAA H., G.A. FARRUKH, Methods and Tools for the Automated Configuration of Distributed

Applications from Reusable Software Architectures and Components, IEE Proc. – Software, 1999,

Vol. 146, No. 6, pp. 277-285.

[12] GOMAA H., D. MENASCE, M. SHIN, Reusable Component Interconnection Pattern for Distributed

Software Architectures, SIGSOFT Software Engineering Notes, 2001, Vol. 26, No. 3, pp. 69-77.

[13] GRAVES A.R., C. CZARNECKI, Design Patterns for Behavior-Based Robotics, IEEE Trans. on

Systems, Man & Cybernetics, Part A (Systems & Humans), 2000, Vol. 30, No. 1, pp. 36-41.

[14] HERRMANN A., T. SCHÖNINGS, Standard Telemetry Processing ¯ An Object Oriented Approach

Using Software Design Patterns, Aerospace Science and Technology, 2000, Vol. 4, pp. 289-297.

[15] HEVERHAGEN T., R. TRACHT, Integrating UML-RealTime and IEC 61131-3 with Function Block

Adapters, Proc. ISORC’2001, IEEE Int’l Symposium on Object-Oriented Distributed Computing,

IEEE Computer Society Press, Los Alamitos, Calif., pp. 395-402.

[16] HEVERHAGEN T., R. TRACHT, Using Stereotypes of the Unified Modeling Language in

Mechatronic Systems, Proc. ITM’01, 1st International Conference on Information Technology in
Mechatronics, Istanbul, Turkey, 1-3 October 2001, pp. 333-338.

[17] IHME T., Design Patterns and Frameworks for Real-Time Embedded Control Software. VTT

Electronics, Oulu, Finland, http://www.vtt.fi/ele/research/soh/projects/finesse/slides/Frameworks-

Product-Line.pdf

[18] JIMENEZ-PERIS R., M. PATINO-MARTINEZ, S. AREVALO, Multithreaded Rendezvous: A

Design Pattern for Distributed Rendezvous, Proc. ACM Symp. On Applied Computing, San Antonio,

Texas, 28 Feb. – 2 March 1999, pp. 571-579.

[19] JOBLING C.P. et al., Object -Oriented Programming in Control System Design: A Survey,

Automatica, 1994, Vol. 30, No. 18, pp. 1221-1261.

[20] van KATWIJK J., J.-J. SCHWARZ, J. ZALEWSKI, Practice of Real-Time Software Architectures:

Collider, Satellites and Tanks Combined, Proc. IFAC Conference on New Technologies for Computer

Control, Hong Kong, P.R. of China, 19-21 November 2001.
[21] LEA D., Design Patterns for Avionics Control Systems, DSSA Adage Project ADAGE-OSW-94-01,

State University of New York, Oswego, New York, November 1994.

[22] MCKEGNEY R., Application of Patterns to Real-Time Object -Oriented Software Design, Master

Thesis, Queen’s University, Kingston, Ontario, Canada, 2000,

http://www.cs.queensu.ca/home/mckegney/Research.html

[23] MCKEGNEY R., T. SHEPARD, Design Patterns and Real-Time Object -Oriented Modeling, Proc.

OOPSLA 2000, Conference on Object-Oriented Programming, Systems, Languages, and

Applications (Addendum), ACM, pp. 55-56.

[24] MOLIN P., L. OHLSSON, Points & Deviations - A Pattern Language for Fire Alarm Systems. Proc.

PloP’96, Third Annual Pattern Languages of Programming Conference, Monticello, Ill., 4-6 Sept.

1996, http://www.cs.wustl.edu/~schmidt/PLoP-96/

[25] NELSON M.L., A Design Pattern for Autonomous Vehicle Software Control Architectures, Proc.
23rd COMPSAC International Computer Software and Applications Conference, 1999, pp. 172 -177.

[26] PARIKH C.R. et al., Towards a Flexible Application Framework for Data Fusion Using Real-Time

Design Patterns, Proc. EUFIT ’98, 6th European Congress on Intelligent Techniques and Soft

Computing, Aachen, Germany, 7-10 Sept. 1998, Vol. 2, pp. 1131-1135.

[27] PONT M.J., Patterns for Time-Triggered Embedded Systems: Building Reliable Applications with

the 8051 Family of Microcontrollers. Addison-Wesley, Harlow, England, 2001.

[28] PONT M.J., Control System Design Using Real-Time Design Patterns, Proc. UKACC Int’l Conf. on

Control, III. Conf. Publication No. 455, IEE, London, 1998, Vol. 2, pp. 1078-1083.

[29] PONT M.J., Designing and Implementing Reliable Embedded Systems Using Patterns, Proc.

EuroPLoP '99. 4th European Conference on Pattern Languages of Programming and Computing,

Dyson, P. and Devos, M. (Eds.), Bad Irsee, Germany, 8-10 July 1999.

[30] PONT M.J. et al., The Design of Embedded Systems Using Software Patterns, Proc. Workshop on
Condition Monitoring, Swansea, UK, 12-15 April 1999, pp. 221-236.

[31] RUBEL B., Patterns for Generating a Layered Architecture, Pattern Languages of Program Design,

J.O. Coplien and D. Schmidt (Eds.), Addison Wesley, Reading, Mass., 1995, pp. 119-128.

[32] SANDEN B., The State-Machine Pattern, Proc. TRI-Ada Conference, 1996, pp. 135-142.

[33] SANDEN B., Concurrent Design Patterns for Resource Sharing, Proc. TRI-Ada Conference, 1997,

pp. 173-183.

[34] SANDEN B., A Design Pattern for State Machines and Concurrent Activities, Proc. Ada-Europe

2001 Conference, Springer-Verlag, Berlin, pp. 203-214.
[35] SANZ R. et al., Design Patterns for Intelligent Control Systems, Proc. 1999 IFAC Congress, Beijing,

P.R. China, 1999.

[36] SCHMIDT D. et al., Pattern-Oriented Software Architecture: Patterns for Concurrent and Distributed

Objects. Vol. 2, John Wiley and Sons, New York, 2000.

[37] SELIC B., An Architectural Pattern for Real-Time Control Software, PLoP’96, Proc. Third Annual

Pattern Languages of Programming Conference, Monticello, Ill., Sept. 4-6, 1996,

http://www.cs.wustl.edu/~schmidt/PLoP-96/

[38] SELIC B., Recursive Control, Patteren Languages of Program Design 3, R.C. Martin et al. (Eds.),

Addison-Wesley, Reading, Mass., 1998 pp. 147-161.

[39] SELIC B., J. RUMBAUGH, Using UML for Modeling Complex Real-Time Systems, Rational

Corporation, Redwood City, Calif, 1998, http://www.rational.com/

[40] SHARP D., W. ROLL, Pattern Usage in an Avionics Mission Processing Product Line, Proc.
OOPSLA 2001 Workshop Towards Patterns and Pattern Languages for OO Distributed Real-Time

and Embedded Systems, Tampa, Fla., 14 October 2001,

http://www.cs.wustl.edu/~mk1/RealTimePatterns/OOPSLA2001/submissions/DavidSharp.pdf

[41] TOMURA T. et al., Object-Oriented Design Pattern Approach for Modeling and Simulating Open

Distributed Control System, Proc. 2001 ICRA, IEEE International Conference on Robotics and

Automation, Seoul, South Korea, 21-26 May 2001, Vol. 1, pp. 211-216.

[42] TOMURA T. et al., Developing Simulation Models of Open Distributed Control Systems by Using

Object -Oriented Structural and Behavioral Patterns, Proc. ISORC 2001, Fourth IEEE International

Symposium on Object-Oriented Real-Time Distributed Computing, pp. 428-437.

[43] WOODWARD K.G., Heading off Tragedy: Using Design Patterns Against a Moving Target, Proc.

2nd World Conf. on Integrated Design and Process Technology, Austin, Texas, 1996, pp. 280-285.

[44] WYNS J., H. van BRUSSEL, P. VALCKENAERS, Design Pattern for Deadlock Handling in Holonic
Manufacturing Systems, Production Planning and Control. 1999, Vol. 10, No. 7, pp. 616-626.

[45] ZALEWSKI J., Real-Time Software Architectures and Design Patterns: Fundamental Concepts and

Their Consequences, Annual Reviews in Control, 2001, Vol. 25, No. 1, pp. 133-146.

[46] ZALEWSKI J., Developing Component Based Software for Real-Time Systems, EUROMICRO

Workshop on Component-Based Software Engineering, Warsaw, Poland, 4-6 September 2001, IEEE

Computer Society, Los Alamitos, Calif., pp. 80-87.

[47] ZALEWSKI J., Object -Orientation vs. Real-Time Systems, Real-Time Systems, 2000, Vol. 18, pp.

75-77.

[48] ZALEWSKI J., Distributed Real-Time Software Architectures and Effective Use of Automatic Tools,

Proc. KKIO 2000, 2nd National Conference on Software Engineering, Zakopane, Poland, 18-20

October 2000, pp. 127-136.

[49] ZALEWSKI J., Real-Time Systems: Design and Practical Aspects, Proc. 14th Fall Conf. of the Polish
Information Processing Society, Mragowo, Poland, 16-20 November 1998, pp. 17-28.

[50] ZALEWSKI J., R. SANZ, M. PONT, Supporting the Design and Implementation of Control Systems

Using Design Patterns, IEEE Control Systems, July 2003 (scheduled for publication).

WZORCE PROJEKTOWE OPROGRAMOWANIA CZASU
RZECZYWISTEGO

 Celem tego artyku³u jest przedstawienie wzorców projektowych do programowania systemów czasu
rzeczywistego. Poszczególne jego czêœci omawiaj¹ kolejno: powstanie koncepcji wzorców projektowych w
programowaniu i wzorce projektowe dla systemów czasu rzeczywistego z punktu widzenia: 1)
u¿ytkowników takich systemów; 2) wytwórców narzêdzi programistycznych; 3) badañ naukowych.
Omówiono tak¿e klasyfikacje takich wzorców wynikaj¹c¹ z systematycznego podejœcia do projektowania
systemów czasu rzeczywistego.

